Engineering Risk Benefit Analysis

$1.155,2.943,3.577,6.938,10.816,13.621,16.862,22.82$, ESD.72, ESD. 721

RPRA 2. Elements of Probability Theory

George E. Apostolakis

Massachusetts Institute of Technology

Spring 2007

Probability: Axiomatic Formulation

The probability of an event A is a number that satisfies the following axioms (Kolmogorov):
$0 \leq \mathbf{P}(\mathrm{A}) \leq 1$
$P($ certain event $)=1$

For two mutually exclusive events A and B :
$\mathbf{P}(\mathbf{A}$ or $\mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})$

Relative-frequency interpretation

- Imagine a large number \mathbf{n} of repetitions of the "experiment" of which A is a possible outcome.
- If A occurs k times, then its relative frequency is:
- It is postulated that: $\quad \lim \frac{k}{n} \equiv \mathbf{P}(\mathbf{A})$
$\mathbf{n \rightarrow \infty} \mathbf{n}$

Degree-of-belief (Bayesian) interpretation

- No need for "identical" trials.
- The concept of "likelihood" is primitive, i.e., it is meaningful to compare the likelihood of two events.
- $\mathbf{P}(\mathbf{A})<\mathbf{P}(B)$ simply means that the assessor judges B to be more likely than A.
- Subjective probabilities must be coherent, i.e., must satisfy the mathematical theory of probability and must be consistent with the assessor's knowledge and beliefs.

Basic rules of probability: Negation

$$
\mathbf{P}(\overline{\mathbf{E}})=\mathbf{1}-\mathbf{P}(\mathbf{E})
$$

Basic rules of probability: Union

$$
\begin{aligned}
\mathbf{P}\left(\bigcup_{1}^{N} \mathbf{A}_{i}\right)= & \sum_{i=1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{A}_{i}\right)-\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \mathbf{P}\left(\mathbf{A}_{i} \mathbf{A}_{j}\right)+ \\
& \ldots+(-1)^{\mathbf{N}+1} \mathbf{P}\left(\bigcap_{1}^{N} \mathbf{A}_{i}\right)
\end{aligned}
$$

Rare-Event Approximation:

$$
\mathbf{P}\left(\bigcup_{1}^{\mathbf{N}} \mathbf{A}_{\mathbf{i}}\right) \cong \sum_{\mathbf{i}=1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{A}_{\mathbf{i}}\right)
$$

Union (cont'd)

- For two events: $\mathbf{P}(\mathbf{A} \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A B)$
- For mutually exclusive events:

$$
\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})
$$

Example: Fair Die

Sample Space: $\{1,2,3,4,5,6\} \quad$ (discrete)
"Fair": The outcomes are equally likely (1/6).
$P($ even $)=P(2 \cup 4 \cup 6)=1 / 2 \quad($ mutually exclusive)

Union of minimal cut sets

From RPRA 1, slide 15

$$
\begin{aligned}
& \mathbf{X}_{\mathbf{T}}=\sum_{i=1}^{N} \mathbf{M}_{\mathbf{i}}-\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \mathbf{M}_{i} \mathbf{M}_{j}+\ldots+(-1)^{N+1} \prod_{i=1}^{N} \mathbf{M}_{i} \\
& P\left(X_{T}\right)=\sum_{i=1}^{N} P\left(M_{i}\right)-\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} P\left(M_{i} M_{j}\right)+\ldots+(-1)^{N+1} P\left(\prod_{i=1}^{N} M_{i}\right)
\end{aligned}
$$

Rare-event approximation:

$$
\mathbf{P}\left(\mathbf{X}_{\mathrm{T}}\right) \cong \sum_{1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{M}_{\mathbf{i}}\right)
$$

Upper and lower bounds

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{\mathbf{T}}\right)=\sum_{\mathbf{i}=1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{M}_{\mathbf{i}}\right)-\sum_{\mathbf{i}=1}^{\mathbf{N}-1} \sum_{\mathrm{j}=\mathbf{i}+1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{M}_{\mathbf{i}} \mathbf{M}_{\mathbf{j}}\right)+\ldots+(-\mathbf{1})^{\mathbf{N}+1} \prod_{\mathbf{i}=1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{M}_{\mathbf{i}}\right) \\
& \mathbf{P}\left(\mathbf{X}_{\mathbf{T}}\right) \leq \sum^{\mathbf{N}} \mathbf{P}\left(\mathbf{M}_{\mathbf{i}}\right) \quad \text { The first "term," i.e., sum, } \\
& \text { gives an upper bound. } \\
& \mathbf{P}\left(\mathbf{X}_{\mathbf{T}}\right) \geq \sum_{\mathrm{i}=1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{M}_{\mathrm{i}}\right)-\sum_{\mathrm{i}=1}^{\mathrm{N}-1} \sum_{\mathrm{j}=\mathbf{i}+1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{M}_{\mathbf{i}} \mathbf{M}_{\mathbf{j}}\right)
\end{aligned}
$$

The first two "terms," give a lower bound.

Conditional probability

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} / \mathbf{B}) \equiv \frac{\mathbf{P}(\mathbf{A B})}{\mathbf{P}(\mathbf{B})} \\
& \mathbf{P}(\mathbf{A B})=\mathbf{P}(\mathbf{A} / \mathbf{B}) \mathbf{P}(\mathbf{B})=\mathbf{P}(\mathbf{B} / \mathbf{A}) \mathbf{P}(\mathbf{A})
\end{aligned}
$$

For independent events:

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A B})=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B}) \\
& \mathbf{P}(\mathbf{B} / \mathbf{A})=\mathbf{P}(\mathbf{B})
\end{aligned}
$$

Learning that A is true has no impact on our probability of B.

Example: 2-out-of-4 System

$M_{1}=X_{1} X_{2} X_{3} \quad M_{2}=X_{2} X_{3} X_{4}$
$M_{3}=X_{3} X_{4} X_{1}$ $M_{4}=X_{1} X_{2} X_{4}$

$$
\begin{aligned}
& X_{T}=1-\left(1-M_{1}\right)\left(1-M_{2}\right)\left(1-M_{3}\right)\left(1-M_{4}\right) \\
& X_{T}=\left(X_{1} X_{2} X_{3}+X_{2} X_{3} X_{4}+X_{3} X_{4} X_{1}+X_{1} X_{2} X_{4}\right)-3 X_{1} X_{2} X_{3} X_{4}
\end{aligned}
$$

2-out-of-4 System (cont'd)

$$
\begin{aligned}
P\left(X_{T}=1\right)=P\left(X_{1} X_{2} X_{3}+X_{2} X_{3} X_{4}+X_{3} X_{4} X_{1}+X_{1} X_{2} X_{4}\right)- \\
3 P\left(X_{1} X_{2} X_{3} X_{4}\right)
\end{aligned}
$$

Assume that the components are independent and nominally identical with failure probability q. Then,
$P\left(X_{T}=1\right)=4 q^{3}-3 q^{4}$
Rare-event approximation:

$$
P\left(X_{T}=1\right) \cong 4 q^{3}
$$

Updating probabilities (1)

- The events, $H_{i}, \mathbf{i}=1$...N, are mutually exclusive and exhaustive, i.e., $H_{i} \cap H_{j}=\boldsymbol{\sigma}$, for $\mathbf{i} \neq \mathbf{j}, \cup H_{i}=\mathbf{S}$, the sample space.
- Their probabilities are $\mathbf{P}\left(\mathbf{H}_{\mathrm{i}}\right)$.
- Given an event E, we can always write

$$
\mathbf{P}(\mathbf{E})=\sum_{1}^{\mathbf{N}} \mathbf{P}\left(\mathbf{E} / \mathbf{H}_{\mathbf{i}}\right) \mathbf{P}\left(\mathbf{H}_{\mathbf{i}}\right)
$$

Updating probabilities (2)

- Evidence E becomes available.
- What are the new (updated) probabilities $\mathbf{P}\left(\mathrm{H}_{\mathrm{i}} / \mathbf{E}\right)$? Start with the definition of conditional probabilities, slide 11.

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{E} H_{\mathbf{i}}\right)=\mathbf{P}\left(\mathbf{E} / \mathbf{H}_{\mathbf{i}}\right) \mathbf{P}\left(\mathbf{H}_{\mathbf{i}}\right)=\mathbf{P}\left(\mathbf{H}_{\mathbf{i}} / \mathbf{E}\right) \mathbf{P}(\mathbf{E}) \quad \Rightarrow \\
& \mathbf{P}\left(\mathbf{H}_{\mathbf{i}} / \mathbf{E}\right)=\frac{\mathbf{P}\left(\mathbf{E} / \mathbf{H}_{\mathbf{i}}\right) \mathbf{P}\left(\mathbf{H}_{\mathbf{i}}\right)}{\mathbf{P}(\mathbf{E})}
\end{aligned}
$$

- Using the expression on slide 14 for $\mathrm{P}(\mathrm{E})$, we get

Bayes' Theorem

Example: Let's Make A Deal

- Suppose that you are on a TV game show and the host has offered you what's behind any one of three doors. You are told that behind one of the doors is a Ferrari, but behind each of the other two doors is a Yugo. You select door A.

At this time, the host opens up door B and reveals a Yugo. He offers you a deal. You can keep door A or you can trade it for door C.

- What do you do?

Let's Make A Deal: Solution (1)

- Setting up the problem in mathematical terms:
$>A=\{$ The Ferrari is behind Door $A\}$
$>B=\{$ The Ferrari is behind Door $B\}$
$>C=\{$ The Ferrari is behind Door $C\}$
- The events A, B, C are mutually exclusive and exhaustive.
- $\mathbf{P}(A)=\mathbf{P}(B)=P(C)=1 / 3$
$E=\{$ The host opens door B and a Yugo is behind it\}

What is $P(A / E) ? \quad \Rightarrow \quad$ Bayes' Theorem

Let's Make A Deal: Solution (2)

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} / \mathbf{E})= \\
& =\frac{\mathbf{P}(\mathbf{E} / \mathbf{A}) \mathbf{P}(\mathbf{A})}{\mathbf{P}(\mathbf{E} / \mathbf{A}) \mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{E} / \mathbf{B}) \mathbf{P}(\mathbf{B})+\mathbf{P}(\mathbf{E} / \mathbf{C}) \mathbf{P}(\mathbf{C})}
\end{aligned}
$$

But

$$
P(E / B)=0
$$

(A Yugo is behind door B).
$P(E / C)=1$
(The host must open door B, if the Ferrari is behind door C ; he cannot open door A under any circumstances).

Let's Make A Deal: Solution (3)

-Let $P(A / E)=x$ and $P(E / A)=p$
-Bayes' theorem gives:

$$
\mathbf{x}=\frac{\mathbf{p}}{1+\mathbf{p}}
$$

Therefore

- For $P(E / A)=p=1 / 2$ (the host opens door B randomly, if the Ferrari is behind door A)
$\Rightarrow \quad P(A / E)=x=1 / 3=P(A)$ (the evidence has had no impact)

Let's Make A Deal: Solution (4)

- Since $\mathbf{P}(\mathbf{A} / \mathbf{E})+\mathbf{P}(\mathbf{C} / \mathbf{E})=1 \Rightarrow$
- $P(C / E)=1-P(A / E)=2 / 3 \quad \Rightarrow$
$\Rightarrow \quad$ The player should switch to door C
- For $\mathbf{P}(\mathrm{E} / \mathbf{A})=\mathbf{p}=1$ (the host always opens door \mathbf{B}, if the Ferrari is behind door A)
$\Rightarrow \quad \mathrm{P}(\mathrm{A} / \mathrm{E})=1 / 2 \quad \Rightarrow \quad \mathrm{P}(\mathrm{C} / \mathrm{E})=\mathbf{1} / 2$, switching to door C does not offer any advantage.

Random Variables

- Sample Space: The set of all possible outcomes of an experiment.
- Random Variable: A function that maps sample points onto the real line.
- Example: For a die \Rightarrow S $=\{\mathbf{1 , 2 , 3 , 4 , 5 , 6}\}$
- For the coin: $S=\{H, T\} \equiv\{0,1\}$

Events

We say that $\{\mathrm{X} \leq \mathrm{x}\}$ is an event, where x is any number on the real line.

For example (die experiment):
$\{X \leq 3.6\}=\{1,2,3\} \equiv\{1$ or 2 or 3$\}$
$\{X \leq 96\}=S \quad$ (the certain event)
$\{X \leq-62\}=\varnothing \quad$ (the impossible event)

Sample Spaces

- The SS for the die is an example of a discrete sample space and X is a discrete random variable (DRV).
- A SS is discrete if it has a finite or countably infinite number of sample points.
- A SS is continuous if it has an infinite (and uncountable) number of sample points. The corresponding RV is a continuous random variable (CRV).
- Example:
$\{T \leq t\}=$ \{failure occurs before $\boldsymbol{t}\}$

Cumulative Distribution Function (CDF)

- The cumulative distribution function (CDF) is

$$
F(x) \equiv \operatorname{Pr}[\mathbf{X} \leq x]
$$

- This is true for both DRV and CRV.

Properties:

1. $F(x)$ is a non-decreasing function of x.
2. $F(-\infty)=0$
3. $F(\infty)=1$

CDF for the Die Experiment

Probability Mass Function (pmf)

- For DRV: probability mass function

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}=\mathbf{x}_{\mathbf{i}}\right) \equiv \mathbf{p}_{\mathbf{i}} \\
& \mathbf{F}(\mathbf{x})=\sum \mathbf{p}_{\mathbf{i}}, \text { for all } \quad \mathbf{x}_{\mathbf{i}} \leq \mathbf{x}
\end{aligned}
$$

$$
\mathbf{P}(\mathbf{S})=\sum_{\mathbf{i}} \mathbf{p}_{\mathbf{i}}=1 \quad \text { normalization }
$$

Example: For the die, $p_{i}=1 / 6$ and $\sum_{1}^{6} p_{i}=1$

$$
F(2.3)=P(1 \cup 2)=\sum_{1}^{2} p_{i}=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
$$

Probability Density Function (pdf)

$$
\begin{gathered}
f(x) d x=P\{x<X<x+d x\} \\
f(x)=\frac{\mathbf{d F}(x)}{d x} \quad F(x)=\int_{-\infty}^{\mathbf{x}} f(s) d s \\
\mathbf{P}(\mathbf{S})=\mathbf{F}(\infty)=\int_{-\infty}^{\infty} \mathbf{f}(\mathbf{s}) \mathbf{d s}=1
\end{gathered}
$$

normalization

Example of a pdf (1)

-Determine k so that

$$
\begin{array}{lrr}
\mathbf{f}(\mathbf{x})=\mathbf{k} \mathbf{x}^{2}, & \text { for } & 0 \leq \mathbf{x} \leq 1 \\
\mathbf{f}(\mathbf{x})=0, & & \text { otherwise }
\end{array}
$$

is a pdf.
Answer:

The normalization condition gives:

Example of a pdf (2)

$$
\begin{gathered}
F(x)=x^{3} \\
F(0.875)-F(0.75)=\int_{0.75}^{0.875} 3 x^{2} d x= \\
=0.67-0.42=0.25= \\
=P\{0.75<X<0.875\}
\end{gathered}
$$

Moments

Expected (or mean, or average) value

$$
E[X] \equiv m \equiv\left\{\begin{array}{lc}
\int_{-\infty}^{\infty} x_{f}(x) d x & \text { CRV } \\
-\sum_{j}^{\infty} x_{j} \mathbf{p}_{\mathbf{j}} & \text { DRV }
\end{array}\right.
$$

Variance (standard deviation σ)

$$
\infty
$$

$$
\mathrm{E}\left[(\mathrm{X}-\mathrm{m})^{2}\right] \equiv \sigma^{2}= \begin{cases}\int_{-\infty}^{\infty}(\mathrm{x}-\mathrm{m})^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx} & \text { CRV } \\ \sum_{i}\left(\mathrm{x}_{\mathrm{j}}-\mathrm{m}\right)^{2} \mathrm{p}_{\mathrm{j}} & \text { DRV }\end{cases}
$$

Percentiles

- Median: The value x_{m} for which
- $F\left(x_{m}\right)=0.50$
- For CRV we define the 100γ percentile as that value of \mathbf{x} for which

$$
\int_{-\infty}^{\mathbf{x}_{\gamma}} \mathbf{f}(\mathbf{x}) \mathbf{d} \mathbf{x}=\gamma
$$

Example

$$
\begin{aligned}
& m=\int_{0}^{1} 3 x^{3} d x=0.75 \\
& \sigma^{2}=\int_{0}^{1} 3(x-0.75)^{2} x^{2} d x=0.0375 \\
& F\left(x_{m}\right)=x_{m}^{3}=0.5 \quad \Rightarrow \quad x_{m}=0.79 \\
& x_{0.05}^{3}=0.05 \quad \Rightarrow \quad x_{0.05}=0.37 \\
& \mathbf{x}_{0.95}^{3}=0.95 \quad \Rightarrow \quad x_{0.95}=0.98
\end{aligned}
$$

