

Engineering Risk Benefit Analysis

1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ESD.72, ESD.721

RPRA 5. Data Analysis

George E. Apostolakis Massachusetts Institute of Technology

Spring 2007

- How do we estimate λ from the evidence?
- How confident are we in this estimate?
- Two methods:
 - Classical (frequentist) statistics
 - Bayesian statistics

Random Samples

• The observed values are independent and the underlying distribution is constant.

• Sample mean:
$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

• <u>Sample variance:</u>

$$s^{2} = \frac{1}{(n-1)} \sum_{1}^{n} (t_{i} - \bar{t})^{2}$$

The Method of Moments: Exponential Distribution

- Set the theoretical moments equal to the sample moments and determine the values of the parameters of the theoretical distribution.
- **Exponential distribution:** $\frac{1}{\lambda} = \bar{t}$

$$\bar{t} = \frac{1}{6}(10.2 + 54 + 23.3 + 41.2 + 73.2 + 28) = \frac{229.9}{6} = 38.32$$

MTTF = 38.32 hrs; $\lambda = \frac{1}{38.32} = 0.026$ hr⁻¹

The Method of Moments: Normal Distribution

• Sample: {5.5, 4.7, 6.7, 5.6, 5.7}

$$\overline{x} = \frac{(5.7 + 4.7 + 6.7 + 5.6 + 5.7)}{5} = \frac{28.4}{5} = 5.68 = \mu$$

$$\sum_{1}^{5} (x_i - \overline{x})^2 = (5.5 - 5.68)^2 + \dots + (5.7 - 5.68)^2 = 2.032$$

$$s^{2} = \frac{2.032}{(5-1)} = 0.508$$

 $s = 0.713 = \sigma$

RPRA 5. Data Analysis

650

- Sample: {r events in t}
- Average number of events: r

$$\lambda t = r \implies \lambda = \frac{r}{t}$$

• {3 eqs in 7 years} $\Rightarrow \lambda = \frac{3}{7} = 0.43$ yr⁻¹

The Method of Moments: Binomial Distribution

• Sample: {k 1s in n trials}

• Average number of 1s: k

•
$$\mathbf{q}\mathbf{n} = \mathbf{k} \implies \mathbf{q} = \frac{\mathbf{k}}{\mathbf{n}}$$

• {3 failures to start in 17 tests} $q = \frac{3}{17} = 0.176$

Censored Samples and the Exponential Distribution

- Complete sample: All n components fail.
- *Censored sample:* Sampling is terminated at time t₀ (with k failures observed) or when the rth failure occurs.
- Define the *total operational time* as:

$$T = \sum_{1}^{k} t_{i} + (n-k)t_{0} \qquad T = \sum_{1}^{r} t_{i} + (n-r)t_{r}$$

- It can be shown that: $\lambda = \frac{k}{T}$ or $\lambda = \frac{r}{T}$
- Valid for the exponential distribution <u>only</u> (no memory).

Example

- Sample: 15 components are tested and the test is terminated when the 6th failure occurs.
- The observed failure times are: {10.2, 23.3, 28.0, 41.2, 54.0, 73.2} hrs
- The total operational time is:

T = 10.2 + 23.3 + 28 + 41.2 + 54 + 73.2 + (15 - 6)73.2 = 888.7

• Therefore

$$\lambda = \frac{6}{888.7} = 6.75 \times 10^{-3} \qquad hr^{-1}$$

Bayesian Methods

• Recall Bayes' Theorem (slide 16, RPRA 2):

- Prior information can be utilized via the prior distribution.
- Evidence other than statistical can be accommodated via the likelihood function.

The Model of the World

- Deterministic, e.g., a mechanistic computer code
- Probabilistic (Aleatory), e.g., R(t/) = exp(-t)
- The MOW deals with <u>observable</u> quantities.
- Both deterministic and aleatory models of the world have assumptions and parameters.
- How confident are we about the validity of these assumptions and the numerical values of the parameters?

λ

The Epistemic Model

- Uncertainties in assumptions are not handled routinely. If necessary, sensitivity studies are performed.
- The epistemic model deals with <u>non-observable</u> quantities.
- Parameter uncertainties are reflected on appropriate probability distributions.
- For the failure rate: $\pi(\lambda) d\lambda = \Pr(\text{the failure rate has a value in } d\lambda)$ about λ)

Unconditional (predictive) probability

$\mathbf{R}(t) = \int \mathbf{R}(t/\lambda) \pi(\lambda) d\lambda$

Communication of Epistemic Uncertainties: The discrete case

Suppose that $P(\lambda = 10^{-2}) = 0.4$ and $P(\lambda = 10^{-3}) = 0.6$

Then, $P(e^{-0.001t}) = 0.6$ and $P(e^{-0.01t}) = 0.4$

 $\mathbf{R(t)} = \mathbf{0.6} \ \mathrm{e^{-0.001t}} + \mathbf{0.4} \ \mathrm{e^{-0.01t}}$

Communication of Epistemic Uncertainties: The continuous case

Risk Curves

Figure by MIT OCW.

The Quantification of Judgment

- Where does the epistemic distribution $\pi(\lambda)$ come from?
- Both substantive and normative "goodness" are required.
- Direct assessments of parameters like failure rates should be avoided.
- A reasonable measure of central tendency to estimate is the median.
- Upper and lower percentiles can also be estimated.

The lognormal distribution

• It is very common to use the lognormal distribution as the epistemic distribution of failure rates.

$$\pi(\lambda) = \frac{1}{\sqrt{2\pi}\sigma\lambda} \exp\left[-\frac{\left(\ln\lambda - \mu\right)^2}{2\sigma^2}\right]$$

 $UB = \lambda_{95} = \exp(\mu + 1.645\sigma)$

$$LB = \lambda_{05} = \exp(\mu - 1.645\sigma)$$

Mechanical Hardware

Component/Primary	Assessed Values		
Failure Modes	Lower Bound	Upper Bound	
Pumps			
Failure to start, Q _d :	3 x 10 ⁻⁴ /d	$3 \ge 10^{-3}/d$	
Failure to run, λ_0 :	3 x 10 ⁻⁶ /hr	3 x 10 ⁻⁴ /hr	
(Normal Environments)			
Valves			
Motor Operated			
Failure to operate, Q _d :	3 x 10 ⁻⁴ /d	3 x 10 ⁻³ /d	
Plug, Q _d :	3 x 10 ⁻⁵ /d	3 x 10 ⁻⁴ /d	
Solenoid Operated			
Failure to operate, Q _d :	3 x 10 ⁻⁴ /d	3 x 10 ⁻³ /d	
Plug, Q _d :	3 x 10 ⁻⁵ /d	$3 \ge 10^{-4}/d$	
Air Operated	5 x 10 /u	5 A 10 / U	
Failure to operate, Q_d :	1 x 10 ⁻⁴ /d	1 x 10 ⁻³ /d	
Plug, Q _d :			
ŭ	3 x 10 ⁻⁵ /d	3 x 10 ⁻⁴ /d	
Check	2 105/1	2 10/11	
Failure to open, Q _d :	3 x 10 ⁻⁵ /d	3 x 10 ⁻⁴ /d	
Relief			
Failure to open, Q _d :	$3 \ge 10^{-6}/d$	3 x 10 ⁻⁵ /d	
Manual			
Plug, Q _d :	3 x 10 ⁻⁵ /d	3 x 10 ⁻⁴ /d	
Pipe			
Plug/rupture			
$<$ 3" diameter, λ_0 :	3 x 10 ⁻¹¹ /hr	3 x 10 ⁻⁸ /hr	
$>$ 3" diameter, λ_0 :	3 x 10 ⁻¹² /hr	3 x 10 ⁻⁹ /hr	
Clutches			
Mechanical			
Failure to engage/disengage	1 x 10 ⁻⁴ /d	1 x 10 ⁻³ /d	

Table by MIT OCW.

Adapted from Rasmussen, et al. "The Reactor Safety Study." WASH-1400, US Nuclear Regulatory Commission, 1975.

Mleso

Electrical Hardware				
Component/Primary Failure Modes	Assessed Values Lower Bound Upper Bound			
Electrical Clutches				
Failure to operate, Q _d :	1 x 10 ⁻⁴ /d	1 x 10 ⁻³ /d		
Motors				
Failure to start, Q_d :	1 x 10 ⁻⁴ /d	1 x 10 ⁻³ /d		
Failure to run (Normal Environments), λ_0 :	3 x 10 ⁻⁶ /hr	3 x 10 ⁻⁵ /hr		
Transformers	7			
Open/shorts, λ_0 :	3 x 10 ⁻⁷ /hr	3 x 10 ⁻⁶ /hr		
Relays	2 10-511	2 104/1		
Failure to energize, Q _d :	3 x 10 ⁻⁵ /d	3 x 10 ⁻⁴ /d		
Circuit Breaker Failure to transfer, Q _d :	3 x 10 ⁻⁴ /d	3 x 10 ⁻³ /d		
Limit Switches				
Failure to operate, Q _d :	1 x 10 ⁻⁴ /d	1 x 10 ⁻³ /d		
Torque Switches				
Failure to operate, Q _d :	$3 \ge 10^{-5}/d$	3 x 10 ⁻⁴ /d		
Pressure Switches				
Failure to operate, Q _d :	3 x 10 ⁻⁵ /d	3 x 10 ⁻⁴ /d		
Manual Switches				
Failure to operate, Q _d :	3 x 10 ⁻⁶ /d	3 x 10 ⁻⁵ /d		
Battery Power Supplies				
Failure to provide proper output, λ_s :	1 x 10 ⁻⁶ /hr	1 x 10 ⁻⁵ /hr		
Solid State Devices				
Failure to function, λ_0 :	3 x 10 ⁻⁷ /hr	3 x 10 ⁻⁵ /hr		
Diesels (complete plant)				
Failure to start, Q_d :	1 x 10 ⁻² /d	$1 \ge 10^{-1}/d$		
Failure to run, λ_0 :	3 x 10 ⁻⁴ /hr	3 x 10 ⁻² /hr		
Instrumentation				
Failure to operate, λ_0 :	1 x 10 ⁻⁷ /hr	1 x 10 ⁻⁵ /hr		

RPRA 5. Data Analysis

- a. All values are rounded to the nearest half order of magnitude on the exponent.
- b. Derived from averaged data on pumps, combining standby and operate time.
- c. Approximated from plugging that was detected.
- d. Derived from combined standby and operate data.
- e. Derived from standby test on batteries, which does not include load.

Table by MIT OCW.

Adapted from Rasmussen, et al. "The Reactor Safety Study." WASH-1400, US Nuclear Regulatory Commission, 1975.

Example

Lognormal prior distribution with median and 95th percentile given as:

$$\lambda_{50} = \exp(\mu) = 3x10^{-3} \text{ hr}^{-1}$$

$$\lambda_{95} = \exp(\mu + 1.645\sigma) = 3x10^{-2} \text{ hr}^{-1}$$

Then $\mu = -5.81$, $\sigma = 1.40$

$$E[\lambda] = \exp(\mu + \frac{\sigma^2}{2}) = 8x10^{-3} \text{ hr}^{-1}$$

$$\lambda_{05} = \exp(\mu - 1.645\sigma) = 3x10^{-4} \text{ hr}^{-1}$$

Updating Epistemic Distributions

• Bayes' Theorem allows us to incorporate new evidence into the epistemic distribution.

$$\pi'(\lambda/E) = \frac{L(E/\lambda)\pi(\lambda)}{\int L(E/\lambda)\pi(\lambda)d\lambda}$$

Example of Bayesian updating of epistemic distributions

- Five components were tested for 100 hours each and no failures were observed.
- Since the reliability of each component is $\exp(-100 \lambda)$, the likelihood function is:
- $L(E/\lambda) = P(\text{comp. 1 did not fail } \underline{AND} \text{ comp. 2 did not fail } \underline{AND} \dots \text{ comp. 5 did not fail}) = \exp(-100\lambda) \times \exp(-100\lambda) \times \exp(-100\lambda) = \exp(-500\lambda)$
- $L(E/\lambda) = \exp(-500\lambda)$

- <u>Note</u>: The classical statistics point estimate is zero since no failures were observed.

Prior (----) and posterior (-----) distributions

λ

24

Impact of the evidence

117

	Mean (hr ⁻¹)	95 th (hr ⁻¹)	Median (hr ⁻¹)	5 th (hr ⁻¹)
Prior distr.	8.0x10 ⁻³	3.0x10 ⁻²	3x10 ⁻³	3.0x10 ⁻³
Posterior distr.	1.3x10 ⁻³	3.7x10 ⁻³	9x10-4	1.5x10 ⁻⁴

Selected References

- Proceedings of Workshop on Model Uncertainty: Its Characterization and Quantification, A. Mosleh, N. Siu, C. Smidts, and C. Lui, Eds., Center for Reliability Engineering, University of Maryland, College Park, MD, 1995.
- *Reliability Engineering and System Safety*, Special Issue on the Treatment of Aleatory and Epistemic Uncertainty, J.C. Helton and D.E. Burmaster, Guest Editors., vol. 54, Nos. 2-3, Elsevier Science, 1996.
- Apostolakis, G., "The Distinction between Aleatory and Epistemic Uncertainties is Important: An Example from the Inclusion of Aging Effects into PSA," *Proceedings of PSA '99, International Topical Meeting on Probabilistic Safety Assessment*, pp. 135-142, Washington, DC, August 22 - 26, 1999, American Nuclear Society, La Grange Park, Illinois.