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Statistical Inference

Theoretical Model Evidence

Failure distribution, Sample, e.g.,
e.g., {t1,…,tn}

• How do we estimate        from the evidence?
• How confident are we in this estimate?
• Two methods:

– Classical (frequentist) statistics
– Bayesian statistics
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Random Samples

• The observed values are independent and the 
underlying distribution is constant.

• Sample mean:

• Sample variance:
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The Method of Moments: 
Exponential Distribution

• Set the theoretical moments equal to the sample 
moments and determine the values of the 
parameters of the theoretical distribution.

• Exponential distribution:

Sample: {10.2, 54.0, 23.3, 41.2, 73.2, 28.0} hrs
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The Method of Moments:
Normal Distribution

• Sample:   {5.5, 4.7, 6.7, 5.6, 5.7}

μ===++++= 68.5
5

4.28
5

)7.56.57.67.47.5(x

032.2)68.57.5(...)68.55.5()xx(
5

1

222
i =−++−=−∑

σ==

=
−

=

713.0s

508.0
)15(

032.2s2



RPRA 5. Data Analysis 6

The Method of Moments:
Poisson Distribution

• Sample: {r events in t}

• Average number of events: r

• {3 eqs in 7 years}
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The Method of Moments:
Binomial Distribution

• Sample: {k 1s in n trials}

• Average number of 1s: k

• qn = k

• {3 failures to start in 17 tests}

n
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Censored Samples and the Exponential 
Distribution

• Complete sample: All n components fail.
• Censored sample: Sampling is terminated at time t0

(with k failures observed) or when the rth failure 
occurs.

• Define the total operational time as:

• It can be shown that:

• Valid for the exponential distribution only (no 
memory).
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Example

• Sample: 15 components are tested and the test 
is terminated when the 6th failure occurs.

• The observed failure times are:
{10.2, 23.3, 28.0, 41.2, 54.0, 73.2} hrs

• The total operational time is:

• Therefore
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Bayesian Methods
• Recall Bayes’ Theorem (slide 16, RPRA 2):

• Prior information can be utilized via the prior 
distribution.

• Evidence other than statistical can be accommodated 
via the likelihood function.
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The Model of the World

– Deterministic, e.g., a mechanistic computer code

– Probabilistic (Aleatory), e.g., R(t/  ) = exp(- t)

– The MOW deals with observable quantities.

– Both deterministic and aleatory models of the world have 
assumptions and parameters.

– How confident are we about the validity of these 
assumptions and the numerical values of the 
parameters?

λ λ
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The Epistemic Model

• Uncertainties in assumptions are not handled routinely.  
If necessary, sensitivity studies are performed.

• The epistemic model deals with non-observable
quantities.

• Parameter uncertainties are reflected on appropriate 
probability distributions.

• For the failure rate:    π(  ) d  = Pr(the failure rate has a 
value in d   about   )λ

λ
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Unconditional (predictive) probability

∫ λλπλ= d)()/t(R)t(R
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Communication of Epistemic 
Uncertainties: The discrete case

Suppose that P( = 10-2) = 0.4   and   P( = 10-3) = 0.6

Then,  P(e-0.001t) = 0.6    and    P(e-0.01t) = 0.4

R(t) = 0.6 e-0.001t + 0.4 e-0.01t

t

1.0

exp(-0.001t)

exp(-0.01t)

0.6
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Communication of Epistemic 
Uncertainties:  The continuous case
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Risk Curves

Figure by MIT OCW.

1,000100
Public Acute Fatalities

Pr
ob

ab
ili

ty
 o

f E
xc

ee
de

nc
e

101
1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04
95th Percentile

Mean

Median

5th Percentile



RPRA 5. Data Analysis 17

The Quantification of Judgment

• Where does the epistemic distribution π(   ) 
come from?

• Both substantive and normative “goodness” are 
required.

• Direct assessments of parameters like failure 
rates should be avoided.

• A reasonable measure of central tendency to 
estimate is the median.

• Upper and lower percentiles can also be 
estimated.

λ
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The lognormal distribution

• It is very common to use the lognormal distribution as 
the epistemic distribution of failure rates.
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Pumps

Component/Primary
Failure Modes

Assessed Values
Lower Bound Upper Bound

Valves

Failure to start, Qd:

Failure to operate, Qd:

Failure to operate, Qd:

Failure to operate, Qd:

Failure to open, Qd:

Failure to open, Qd:

Plug, Qd:

Plug, Qd:

Plug, Qd:

Failure to run, λo:

< 3" diameter, λo:
> 3" diameter, λo:

(Normal Environments)

3 x 10-4/d 3 x 10-3/d
3 x 10-6/hr 3 x 10-4/hr

3 x 10-4/d 3 x 10-3/d

3 x 10-5/d 3 x 10-4/d

3 x 10-4/d 3 x 10-3/d
Plug, Qd: 3 x 10-5/d 3 x 10-4/d

1 x 10-4/d 1 x 10-3/d

3 x 10-5/d 3 x 10-4/d

3 x 10-5/d 3 x 10-4/d

3 x 10-6/d 3 x 10-5/d

3 x 10-5/d 3 x 10-4/d

3 x 10-11/hr 3 x 10-8/hr
3 x 10-12/hr 3 x 10-9/hr

1 x 10-4/d 1 x 10-3/d

Motor Operated

Solenoid Operated

Check

Relief

Manual

Plug/rupture

Mechanical
Failure to engage/disengage

Pipe

Clutches

Mechanical Hardware

Air Operated

Table by MIT OCW.

Adapted from Rasmussen, et al.
"The Reactor Safety Study."
WASH-1400, US Nuclear Regulatory
Commission, 1975.



 RPRA 5. Data Analysis 20

Table by MIT OCW.

Adapted from Rasmussen, et al.
The Reactor Safety Study."

WASH-1400, US Nuclear Regulatory
Commission, 1975.

"

Motors

Failure to start, Q 1 x 10-3
d
: 1 x 10-4/d /d

Failure to run
(Normal Environments), λ -5

o
: 3 x 10-6/hr 3 x 10 /hr

Transformers

Open/shorts, λ 3 x 10-7/hr 3 x 10-6
o
: /hr

Relays

Failure to energize, Q -5 -4
d
: 3 x 10 /d 3 x 10 /d

Circuit Breaker

Failure to transfer, Q
d
: 3 x 10-4/d 3 x 10-3/d

Limit Switches
Failure to operate, Q 1 x 10-3

d
: 1 x 10-4/d /d

Torque Switches

Failure to operate, Q : 3 x 10-5/d -4
d

3 x 10 /d

Pressure Switches

Failure to operate, Q
d
: 3 x 10-5/d 3 x 10-4/d

Manual Switches

Failure to operate, Q : 3 x 10-6 -5
d

/d 3 x 10 /d

Battery Power Supplies
Failure to provide
proper output, λ : 1 x 10-6/hr 1 x 10-5/hr

s

Solid State Devices

Failure to function, λ
o
: 3 x 10-7/hr 3 x 10-5/hr

Diesels (complete plant)

Failure to start, Q -2
d
: 1 x 10 /d 1 x 10-1/d

Failure to run, λ
o
: 3 x 10-4/hr 3 x 10-2/hr

Instrumentation

Failure to operate, λ
o
: 1 x 10-7/hr 1 x 10-5/hr

Electrical Hardware

Electrical Clutches

Failure to operate, Q
d
: 1 x 10-4/d 1 x 10-3/d

Component/Primary Assessed Values
Failure Modes Lower Bound Upper Bound

a.  All values are rounded to the nearest
     half order of magnitude on the exponent.

b.  Derived from averaged data on pumps,
     combining standby and operate time.

c.  Approximated from plugging that was
     detected.

d.  Derived from combined standby and
     operate data.

e.  Derived from standby test on batteries,
     which does not include load.
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Example

13
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Lognormal prior distribution with median and 
95th percentile given as:
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Updating Epistemic Distributions

• Bayes’ Theorem allows us to incorporate new 
evidence into the epistemic distribution.

∫
=

λd)λ(π)λ/E(L
)λ(π)λ/E(L)E/λ('π



RPRA 5. Data Analysis 23

Example of Bayesian updating of epistemic 
distributions

• Five components were tested for 100 hours each and no 
failures were observed.

• Since the reliability of each component is exp(-100   ), 
the likelihood function is:

• L(E/   ) = P(comp. 1 did not fail AND comp. 2 did not 
fail AND… comp. 5 did not fail) = exp(-100   ) x exp(-
100   ) x…x exp(-100   ) = exp(-500   )

• L(E/ ) = exp(-500   )
– Note: The classical statistics point estimate is zero since no 

failures were observed.

λ
λ

λ

λ

λλ

λ

λ



RPRA 5. Data Analysis 24

Prior (     )   and posterior (       ) 
distributions
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Impact of the evidence

Mean
(hr-1)

95th

(hr-1)
Median

(hr-1)
5th

(hr-1)
Prior 
distr.

8.0x10-3 3.0x10-2 3x10-3 3.0x10-3

Posterior 
distr.

1.3x10-3 3.7x10-3 9x10-4 1.5x10-4
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