Engineering Systems Doctoral Seminar

ESD.83 – Fall 2011

Session 13 Faculty: Chris Magee and Joe Sussman TA: Rebecca Kaarina Saari Guest: Professor Richard de Neufville

Massachusetts Institute of Technology Engineering Systems Division

© 2010 Chris Magee and Joseph Sussman, Engineering Systems Division, Massachusetts Institute of Technology

Session 13: Agenda

- □ Welcome and Overview of class 13 (5 min.)
- □ Dialogue with Professor de Neufville (55min)
- Break (10 min.)
- Discussion of other papers and assignment 9- a survey of research on engineering design
 - Introduction to and framing of session (SFST)
 - Discussion of individual papers
 - Attempt to integrate understanding of field from individual papers. Is an integrated view useful?
- Theme and topic integration (Magee)
 - Output of engineering design
 - Socio role in integrated view

Next Steps -preparation for week 14: (5 min.)

Massachusetts Institute of Technology Engineering Systems Division

© 2009Chris Magee and Joseph Sussman, Engineering Systems Division, Massachusetts Institute of Technology

Scale/Scope of Engineering Design

- All technologically-based design (technical knowledge plays a role in *the creation of useful, novel* stuff)
- Knowledge from all technical fields (that is sciencebased) including social sciences
- All contexts (large- small, complex-simple, publicprivate-NGO:, purposes for design such as profits, altruism, etc.; all aspects of design process including organizational, cognitive etc.; inputs/outputs) are in scope.
- Non-technical design (poetry, music, visual art, dance, non-technical organization, etc.) seems to rely on similar cognitive processes but is not in our chosen boundaries.

Massachusetts Institute of Technology Engineering Systems Division

Function: Why have a session on Engineering Design?

- From a research viewpoint, it is (after human factors), one of the earlier areas of engineering research that involves behavioral sciences.
- From a practice viewpoint, there is no other engineering activity that has nearly as much impact on the world ("Big D").
- A question to address: What might be meant if we use the term "socio-technical engineering design"?
- Simultaneous design of artifacts, processes, standards, organizations and institutions...

Temporal Considerations in Engineering Design

- Design is a transformation of existing knowledge to novel, useful stuff;
- thus the accumulation over time of useful knowledge is an essential consideration in design;
- Feedback models for engineering design are important as *iteration* is fundamental to any design process
- □ The outputs of design cause changes in the way humans live and thus have societal

fects over time;

Structure of Engineering Design Field

- As usual, there are alternative valid structures one can consider; for examples:
- Fields of engineering design (classical engineering fields and/or nature of design output);
- Scale, time-frame of design project including organizational, attributes of output (ilitities, etc.) and process variables
- Scientific disciplines and how the process works
- Social structure among and between users, designers, clients and other stakeholders

List of papers and categories

Formative essay-

1. Chapter 5 from Simon's The Sciences of the Artificial

Cognitive Science and Engineering Design

- 2. Parasuranam and Sheridan , "A model for Human Interaction.."
- 3. Chapter 4 from Weisberg's book- *Creativity*
- 4. Ball, Ormerod and Morely- "Spontaneous Analogizing by novices and experts.."
- 5. Linsey, Wood and Markman "Modality and Representation in Analogy"

Processes and Organizations for Engineering Design

- 6. Chapters/essays from *The Mythical Man-Month* by Fred Brooks
- 7. Frey et al, "The Pugh controlled convergence..: Model.."
- 8. Chapter 6 from de Weck, Roos and Magee, :"Partially designed, .."
- 9. Carlile "Transferring, Translating, and Transforming: An Integrative Framework for Managing Knowledge across Boundaries"

Effects of Engineering Design

10. Luo, Olechowski and Magee "Design Strategy..."

Massachusetts Institute of Technology

Engineering Systems Division

Formative Essay

 Simon: "The Science of Design: Creating the Artificial" (an essay from 1968/9 in his book- *The Sciences of the Artificial*)

Jameson Toole

Massachusetts Institute of Technology Engineering Systems Division

Cognitive Science and Engineering Design I

2. Parasuranam, Sheridan and Wickens "A Model for Types and Levels of Human Interaction with Automation", *IEEE Transactions on Systems, Man and Cybernetics- Part A: Systems and Humans*, 2000

Massachusetts Institute of Technology Engineering Systems Division

Systems with different levels of automation

MIT ESD Massachusetts Institute of Technology Engineering Systems Division

Massachusetts Institute of Technology Engineering Systems Division

Recommended types and levels for future systems

MIT ESD Massachusetts Institute of Technology Engineering Systems Division Cognitive Science and Engineering Design II

 R. W. Weisberg, "The Cognitive Perspective Part II: Knowledge and Expertise in Problem Solving" (Chapter from book- *Creativity* 2006)

Jason Ryan

Massachusetts Institute of Technology Engineering Systems Division

The Continuum of Creative Problem Solving

Working backward			
Means-end analysis	Remote analogies	Regional analogies	Local analogies
"weak" bottom-up methods	Increasing info	rmation →	"strong" experience-based methods
MIT ESD Massachusetts Institute of Technology Engineering Systems Division			14

Weisberg's problem solving flow chart

Cognitive Science and Engineering Design III

 Ball, Ormerod and Moreley , "Spontaneous Analogizing in Engineering Design: A Comparative Analysis of Experts and Novices", Design Studies, 2004

Josephine Wolff

Massachusetts Institute of Technology Engineering Systems Division

Cognitive Science and Engineering Design IV

 Linsey, Wood and Markman, "Modality and Representation in Analogy", Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2008

David Gerstle

Massachusetts Institute of Technology Engineering Systems Division

Processes and Organizations for Engineering Design I

 Brooks, "The Mythical Man-Month and other Essays" Chapters in his book The Mythical Man-Month (1974/1999)

Stephen Zoepf

Massachusetts Institute of Technology Engineering Systems Division

Processes and Organizations for Engineering Design II

7. Frey, Herder, Wijnia, Subrahmanian, Katsikopoulos and Clausing. "The Pugh controlled convergence method: Model Based Evaluation and Implications for Design Theory", *Research in Engineering Design* 2009

Morgan Dwyer

Massachusetts Institute of Technology Engineering Systems Division

The Pugh Matrix

Populate Pugh Matrix with Potential Concepts

- Establish a "datum" concept
- Establish a set of distinct criteria to evaluate potential concepts
- For each criteria, evaluate concepts' performance compared to datum

Iterate

- Eliminate under-performing concepts
- Investigate discrepancies
 - Create new concepts by synthesizing knowledge gained through evaluation process

The Pugh Matrix provides engineering teams with a structured methodology to organize the design process and to facilitate communication. It also helps teams to identify areas for future study and to create new concepts.

Engineering Systems Division

Example of Pugh's Method removed due to copyright restrictions.

Frey et al's Contribution

Quantitative Model of Pugh Controlled Convergence Process (PuCC)

- PuCC efficiently reduces the size of design spaces
- PuCC identifies "good" concepts

Review of Related Academic Literature

- Hazelrigg (1998) argued that PuCC's "pair-wise" comparison process is an invalid decision-making process because it does not calculate global utility
- Czerlinski et al (1999) argue that human cognitive processes respond more effectively to simple decision-making heuristics (like "pair-wise" comparison) as compared to more complicated schemes (like utility functions)

Frey et al's review of how the Pugh Matrix is used in practice was sufficient to convince me of its utility; the quantitative model was unnecessary and unpersuasive. Perhaps more interesting questions relate to Frey et al's literature review; for example, how does the Pugh Matrix aid individual cognitive and group social processes?

Massachusetts Institute of Technology Engineering Systems Division Processes and Organizations for Engineering Design III

8. de Weck, Roos and Magee, "Partially Designed, Partially Evolved" (a book chapter from 2011 book *Engineering Systems: Meeting Human Needs in a Complex Technological World*)

Steven Fino

Massachusetts Institute of Technology Engineering Systems Division

Processes and Organizations for Engineering Design IV

 Carlile, "Transferring, Translating and Transforming: An Integrative Framework for Managing Knowledge across Boundaries", Organizational Science, 2004

Jonathon Krones

Massachusetts Institute of Technology Engineering Systems Division

Carlile, PR (2004). "Transferring, Translating, and Transforming: An Integrative Framework for Managing Knowledge across Boundaries," Organization Science,

Effects of Engineering Design

 Luo, Olechowski and Magee, "Technologically-based Design as a Strategy for Sustainable Economic Growth" (paper submitted in October, 2011)

Bill Young

Massachusetts Institute of Technology Engineering Systems Division

Technologically-based Design

Main argument: "Tech-based design has important strategic value for long-term sustainable economic growth."

- □ Key ideas:
 - Differentiate between innovation, invention, and design
 - Not all design created equal (tech-based design leverages deep expertise
 - Deep expertise best determinant of successful design (can be accumulated)
 - In depth study of Singapore reveals they are leveraging many (but not all) aspects of tech-based design as part of a successful national strategy for economic growth

ESD Massachusetts Institute of Technology Engineering Systems Division

MIT

Critique

- Line between art and engineering
 - increasingly blurring (IDEO, MIT Media lab, data analytics companies, etc.)
- Accumulation of deep expertise possible in any field (e.g. work of Roger Martin, Hillary Austen)

Fig.1. Relationship between Design Output, Invention, and Innovation

By Massichuse of Technology Olechowski, C. Magee

Session 13: Agenda

- □ Welcome and Overview of class 13 (5 min.)
- □ Dialogue with Professor de Neufville (55min)
- Break (10 min.)
- Discussion of other papers and assignment 9- a survey of research on engineering design
 - Introduction to and framing of session (SFST)
 - Discussion of individual papers
 - Attempt to integrate understanding of field from individual papers. Is an integrated view useful?
- Theme and topic integration (Magee)
 - Output of engineering design
 - Socio role in integrated view

Next Steps -preparation for week 14: (5 min.)

Massachusetts Institute of Technology Engineering Systems Division

© 2009Chris Magee and Joseph Sussman, Engineering Systems Division, Massachusetts Institute of Technology

Output of Engineering Design

- If you wanted to <u>quantitatively</u> study the effect of engineering design over time, what could you do?
- Use a metric of "goodness" that results from new designs and plot it over time.
- The best-known example?

Massachusetts Institute of Technology Engineering Systems Division

FIGURE 9. Integrated circuit complexity, actual data compared with 1975 projection. Source: Intel. Courtesy of Intel Corporation. Used with permission.

From Moore, G. E. "Moore's Law at 40"

Massachusetts Institute of Technology

Engineering Systems Division

Output of Engineering Design

- Moore's Law is a special example even if does cover ~ 10 orders of magnitude and ~ 5 decades.
- What might be done to more generally study the effects or outputs of engineering design over time?
- Study functional performance and many other cases of tradeoff metrics like transistors per die.

Massachusetts Institute of Technology Engineering Systems Division

Terminology - Functional Performance

Function- what a system, device etc. does

Functional technological classification with operands and operations

Operand	berand				
	Matter (M)	Energy (E)	Information (I)		
Operation					
Transform	Blast furnace	Engines, electric motors	Analytic engine, calculator		
Transport	Truck	Electrical grid	Cables, radio, telephone and Internet		
Store	Warehouse	Batteries, flywheels, capacitors	Magnetic tape and disk, book		
Exchange	eBay trading system	Energy markets	World wide web, Wikipedia		
Control	Health care system	Atomic energy commission	Internet engineering task force		

Performance- How well the function is achieved and measured by a FPM (Functional Performance Metric) : Tradeoff metric

Table 2

Operation and functional performance metrics for measuring the progress in energy technology

Operation	FPM name	FPM units		
Storage	Stored specific energy	Watt-hours per liter		
	Energy storage density	Watt-hours per kg		
	Stored energy per unit cost	Watt-hours per U.S. dollars (2005)		
Transportation	Powered distance	Watts×km		
	Powered distance per unit cost	Watts×km per U.S. dollars (2005)		
Transformation	Specific power	Watts per liter		
	Power density	Watts per kg		
	Power per unit cost	Watts per U.S. dollars (2005)		

© 2008 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Functional Performance Metrics

Generic technical function	Functional performance metric	Years	References
Energy storage	 Watt-hours per liter Watt-hours per kg Watt-hours per \$ 	 1884-2005 1884-2004 1950-2005 	Koh and Magee, 2008
Energy transport	Watts times per km.Watts x km. per \$	1889-20051889-2005	Koh and Magee, 2008
Energy transformation	Watts per KGWatts per literWatts per \$	1881-20021881-20021896-2002	Koh and Magee, 2008
Information storage	Bits per ccBits per \$	1880-20041920-2004	Koh and Magee, 2006
Information transport	• Mbs • Mbs per \$	1850-20041850-2004	Koh and Magee, 2006
Information transformation	• MIPS • MIPS per \$	1890-20041890-2004	Moravec, 1999 Koh and Magee,

Image by MIT OpenCourseWare.

MIT ESD

Massachusetts Institute of Technology

Engineering Systems Division

Temporality

□ Time dependence of capability

- Only the "best" or highest capability is considered for each time period
- This is independent of the basic Technical Artifact, System or Approach (TASA) and is the highest for the particular function or tradeoff metric

Massachusetts Institute of Technology Engineering Systems Division

Massachusetts Institute of Technology Engineering Systems Division

MIT ESD Massachusetts Institute of Technology Engineering Systems Division

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology

39

Technical Capability Metrics Time Dependence

- Exponentials with time over long periods (rate of improvement ranges from 2% per year (or less) to more than 40% per year. Rates of improvement are relatively constant
- For 14 FPMs and for 31 tradeoff metrics, only 3 cases of limits are seen. None of these fit the logistic or S curve often seen for market share.
- Although the progress occurs as a result of volatile human processes (invention, marketing, innovation etc.), the results are surprisingly "regular". (Ceruzzi essay – 2005)

Massachusetts Institute of Technology Engineering Systems Division

Presentation Outline

- Introduction
- Caveat
- Schematic overview of creative design (= invention) process
- Measurement of technological capability
- Temporality Results for T. C.
- Some Design Implications
- Systems analyses and choices about what to design

Massachusetts Institute of Technology Engineering Systems Division

Selected Design Implications

- Know what the rates of change are (or a reasonable estimate) for the devices you are designing and of the subsystem elements you are using-know what the best are likely to be in the near future.
- Shop for and/or use subsystems with knowledge of their effectiveness in hand..
- Project when inventions are useful!

Massachusetts Institute of Technology Engineering Systems Division

MIT ESD

Massachusetts Institute of Technology Engineering Systems Division

Selected Design Implications

- Know what the best are likely to be in the near future.
- □ Shop for and/or use subsystems with knowledge of their effectiveness in hand..
- Project when inventions are useful!
- The major implication is that the design process that leads to these improvements is cumulative;
- What are the societal implications?

Massachusetts Institute of Technology Engineering Systems Division

Societal Implications of Continuous Exponential Increase in Technological **Capability Without Limit** In general, they are enormous and are driving human and societal change in an accelerating fashion for > 200 Yrs. \Box In specific cases, it is hard to anticipate the nature of the change -thus even timing is not determined by examination of either capability or diffusion of technology

Massachusetts Institute of Technology Engineering Systems Division

Clock Accuracy divided by Volume

Societal Implications of Continuous **Exponential Increase in Technological Capability Without Limit** In general, driving of societal change in an accelerating fashion for > 200 Yrs. \Box In specific cases, it is hard to anticipate the nature of the change Energy Systems Changes, predictable?: cost-effective storage and solar PVs fully economically viable by 2030; however, the social/geo-political result is not at all clear Population...large societal change beyond N

Massachusetts Institute of Technology Engineering Systems Division

Broken Limits

Image by MIT OpenCourseWare.

Massachusetts Institute of Technology Engineering Systems Division

Technical Capability Progress Rates

Technology	FPM units	Years	Rate of progress	Technology	FPM units	Years	Rate of progress
Genome sequencing	Basepairs/\$	35	45%	PV Solar energy transformation	Watts/\$	50	12%
MRI resolution	Details/mm/sec	25	42%	Flywheel energy storage	Watts/kg	25	11%
MRI res./cost	Details/mm/sec /\$	25	41%	Fossil fuel to mechanical power	Watts/\$	105	6%
Computation	MIPS	105	37%	Fossil Fuel to	Watts/cc	105	6%
Wireless coverage density	Bitspersecond/ m ²	105	33%	mechanical power	Wattsxkm/\$	80	40/
Computation	MIPS/\$	90	31%	electrical	WattoAkini, ¢		4%
Info Storage	Mb/cc/\$	90	26%	Fossil fuel to mechanical power	Watts/kg	100	4%
CT Resolution	Details/mm/sec	30	22%	Battery energy storage	Watts/cc	115	4%
Capacitance Energy Storage	Watthours/liter	40	21%	Battery energy storage	Watts/\$	60	3%
				Battery energy storage	Watts/kg	115	3%
Info Storage	Mb/cc	90	20%	Energy transform,	Watts/cc	105	3%
Wired info transport	Mbs/\$	150	19%	electrical to mech		_	
Wired info transport	Mbs	150	19%	Energy transform electrical to mech	Watts/kg	105	3%
Capacitance Energy Storage	Watthours/\$	40	18%	Energy transform-solar	Cal./acre	~200	1.5%
Wireless info transp	Kbps	105	18%	Telescope resolution	Effective	350	0.7%
Wireless spectral efficiency	Bps/Hz	105	15%		diameter	75	
Capacitance energy storage	Watthours/kg	40	15%	effectiveness	Liteyears/\$	/5	-2%
Electrical energy transport Massachusetts Institute di Techno Francourius Statume Biolean	wattKm	115	13%	Education effectiveness	Amount learned/\$	150	-2%

MIT OpenCourseWare http://ocw.mit.edu

ESD.83 Doctoral Seminar in Engineering Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.