ES.268 Lecture 3 Feb 16, 2010

http://erikdemaine.org/papers/AlgGameTheory_GONC3

Playing Games with Algorithms:

- most games are hard to play well:
- Chess is EXPTIME-complete:
 - $n \times n$ board, arbitrary position
 - <u>need</u> exponential (c^n) time to find a winning move (if there is one)
 - also: as hard as <u>all</u> games (problems) that need exponential time
- Checkers is EXPTIME-complete:
 - \Rightarrow Chess & Checkers are the "same" computationally: solving one solves the other

(PSPACE-complete if draw after poly. moves)

- Shogi (Japanese chess) is EXPTIME-complete
- Japanese Go is EXPTIME-complete

– U. S. Go might be harder

- Othello is PSPACE-complete:
 - conjecture requires exponential time, but not sure (implied by $P \neq NP$)
- can solve some games fast: in "polynomial time" (mostly 1D)

Kayles:

- move = hit one or two adjacent pins

- last player to move wins (normal play)

Let's play!

First-player win: <u>SYMMETRY STRATEGY</u>

- move to split into two equal halves (1 pin if odd, 2 if even)
- whatever opponent does, do same in other half

 $(K_n + K_n = 0 \dots \text{ just like Nim})$

Impartial game, so Sprague-Grundy Theory says Kayles \equiv Nim somehow

<u>**RECURRENCE!**</u> — write what you want in terms of smaller things

How do we compute it?

nimber $(K_0) = 0$ (BASE CASE) nimber $(K_1) = \max\{nimber(K_0) \oplus nimber(K_0)\}$ $0 \oplus 0 = 0$ = 1nimber $(K_2) = \max\{nimber(K_0) \oplus nimber(K_1), 0 \oplus 1 = 1$ $nimber(K_0) \oplus nimber(K_0)\}$ $0 \oplus 0 = 0$ = 2so e.g. $K_2 + *2 = 0 \Rightarrow 2nd$ player win nimber $(K_3) = \max\{nimber(K_0) \oplus nimber(K_2), \dots + 1 \}$

 $0 \oplus 2 = 2$ nimber(K₀) \oplus nimber(K₁), $0 \oplus 1 = 1$ nimber(K₁) \oplus nimber(K₁)} $1 \oplus 1 = 0$ = 3

nimber
$$(K_4)$$
 = mex{nimber $(K_0) \oplus$ nimber (K_3) ,
 $0 \oplus 3 = 3$
nimber $(K_0) \oplus$ nimber (K_2) ,
 $0 \oplus 2 = 2$
nimber $(K_1) \oplus$ nimber (K_2) ,
 $1 \oplus 2 = 3$
nimber $(K_1) \oplus$ nimber (K_1) }
 $1 \oplus 1 = 0$
 $= 1$

In general: if we compute $nimber(K_0)$, $nimber(K_1)$, $nimber(K_2)$,... in order, then we always use nimbers that we've already computed (because smaller)

– in Python, can do this with for loop:

$k = \{\}$	960 - 4	972 - 4	984 - 4
for n in range(0, 1000):	961 - 1	973 - 1	985 - 1
$k[n] = mex \left([k[i] \ \ k[n - i - 1] \text{ for } i \text{ in } range(n)] + \right)$	962 - 2	974 - 2	986 - 2
[k[i] ^ k[n - i - 2] for i in range(n - 1)])	963 - 8	975 - 8	987 - 8
print n, "-", k[]	964 - 1	976 - 1	988 - 1
	965 - 4	977 - 4	989 - 4
def mex(nimbers):	966 - 7	978 - 7	990 - 7
nimbers = set(nimbers)	967 - 2	979 - 2	991 - 2
n = 0	968 - 1	980 - 1	992 - 1
while n in nimbers: n = n + 1	969 - 8	981 - 8	993 - 8
return n	970 - 2	982 - 2	994 - 2
	971 - 7	983 - 7	995 - 7
	periodic mod 12!		
	(starting at '72)		
	[Guy & Smith 1972]		

DYNAMIC PROGRAMMING

<u>How fast</u>? to compute nimber (K_n) :

- look up $\approx 4n$ previous nimbers
- compute $\approx 2n$ nimsums (XOR)
- compute one mex on $\approx 2n$ nimbers
- call all this O(n) work "order n" need to do this for $n = 0, 1, \dots, m$

$$\Rightarrow \sum_{n=0}^{m} O(n) = O\left(\sum_{n=0}^{m} n\right) = O\left(\frac{m(m+1)}{2}\right) = O(n^{2})$$
POLYNOMIAL TIME — GOOD

<u>Variations</u>: dynamic programming also works for:

- Kayles on a cycle
 - (1 move reduces to regular Kayles \Rightarrow 2nd player win)
- Kayles on a tree: target vertex <u>or</u> 2 adj. vertices

 Kayles with various ball sizes: hit 1 or 2 or 3 pins (still 1st player win)

<u>Cram</u>: impartial Domineering

- board = $m \times n$ rectangle, possibly with holes
- $move = place a domino (make 1 \times 2 hole)$ Symmetry strategies: [Gardner 1986]
 - even \times even: reflect in both axes
 - \Rightarrow 1st player win
 - even \times odd: play 2 center \Box s then reflect in both axes
 - \Rightarrow 1st player win
 - $\text{ odd} \times \text{ odd: } \text{OPEN} \text{ who wins?}$

 $\underline{\text{Liner Cram}} = 1 \times n \text{ cram}$

- easy with dynamic programming
- also periodic [Guy & Smith 1956]
- -1×3 blocks still easy with DP
- OPEN : periodic?

Horizontal Cram: 1 only

 \Rightarrow sum of linear crams!

 $2 \times n$ Cram: Nimbers OPEN

Let's play!

 $3 \times n$ Cram: winner OPEN

(dynamic programming doesn't work)

MIT OpenCourseWare http://ocw.mit.edu

ES.268 The Mathematics in Toys and Games Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.