ES. 268	Lecture 3	Feb 16, 2010

http://erikdemaine.org/papers/AlgGameTheory_GONC3

Playing Games with Algorithms:

- most games are hard to play well:
- Chess is EXPTIME-complete:
- $n \times n$ board, arbitrary position
- need exponential (c^{n}) time to find a winning move (if there is one)
- also: as hard as all games (problems) that need exponential time
- Checkers is EXPTIME-complete:
\Rightarrow Chess \& Checkers are the "same" computationally: solving one solves the other
(PSPACE-complete if draw after poly. moves)
- Shogi (Japanese chess) is EXPTIME-complete
- Japanese Go is EXPTIME-complete
- U. S. Go might be harder
- Othello is PSPACE-complete:
- conjecture requires exponential time, but not sure (implied by P $\neq \mathrm{NP}$)
- can solve some games fast: in "polynomial time" (mostly 1D)

Kayles:

- move = hit one or two adjacent pins
- last player to move wins (normal play)

Let's play!

First-player win: SYMMETRY STRATEGY

- move to split into two equal halves (1 pin if odd, 2 if even)
- whatever opponent does, do same in other half $\left(K_{n}+K_{n}=0 \ldots\right.$ just like Nim $)$

Impartial game, so Sprague-Grundy Theory says Kayles \equiv Nim somehow

$$
\begin{aligned}
- \text { followers }\left(K_{n}\right)= & \left\{K_{i}+K_{n-i-1}, K_{i}+K_{n-i-2} \mid i=0,1, \ldots, n-2\right\} \\
\Rightarrow \operatorname{nimber}\left(K_{n}\right)= & \operatorname{mex}\left\{\operatorname{nimber}\left(K_{i}+K_{n-i-1}\right),\right. \\
& \operatorname{nimber}\left(K_{i}+K_{n-i-2}\right) \\
& \mid i=0,1, \ldots, n-2\} \\
-\operatorname{nimber}(x+y)= & \operatorname{nimber}(x) \oplus \operatorname{nimber}(y) \\
\Rightarrow \operatorname{nimber}\left(K_{n}\right)= & \operatorname{mex}\left\{\operatorname{nimber}\left(K_{i}\right) \oplus \operatorname{nimber}\left(K_{n-i-1}\right),\right. \\
& \quad \operatorname{nimber}\left(K_{i}\right) \oplus \operatorname{nimber}\left(K_{n-i-2}\right) \\
& \mid i=0,1, \ldots n-2\}
\end{aligned}
$$

RECURRENCE! - write what you want in terms of smaller things

How do we compute it?

$$
\begin{aligned}
& \operatorname{nimber}\left(K_{0}\right)=0 \quad \text { (BASE CASE) } \\
& \operatorname{nimber}\left(K_{1}\right)=\operatorname{mex}\left\{\operatorname{nimber}\left(K_{0}\right) \oplus \operatorname{nimber}\left(K_{0}\right)\right\} \\
& 0 \oplus 0=0 \\
& =1 \\
& \operatorname{nimber}\left(K_{2}\right)=\operatorname{mex}\left\{\operatorname{nimber}\left(K_{0}\right) \oplus \operatorname{nimber}\left(K_{1}\right),\right. \\
& 0 \oplus 1=1 \\
& \left.\operatorname{nimber}\left(K_{0}\right) \oplus \operatorname{nimber}\left(K_{0}\right)\right\} \\
& 0 \oplus 0=0 \\
& =2
\end{aligned}
$$

so e.g. $K_{2}+* 2=0 \Rightarrow 2$ nd player win

$$
\begin{array}{r}
\operatorname{nimber}\left(K_{3}\right)=\operatorname{mex}\left\{\operatorname{nimber}\left(K_{0}\right) \oplus \operatorname{nimber}\left(K_{2}\right),\right. \\
0 \quad \oplus \quad 2=2 \\
\operatorname{nimber}\left(K_{0}\right) \oplus \operatorname{nimber}\left(K_{1}\right), \\
0 \quad \oplus \quad 1=1 \\
\left.\operatorname{nimber}\left(K_{1}\right) \oplus \operatorname{nimber}\left(K_{1}\right)\right\} \\
=3
\end{array}
$$

```
\(\operatorname{nimber}\left(K_{4}\right)=\operatorname{mex}\left\{\operatorname{nimber}\left(K_{0}\right) \oplus \operatorname{nimber}\left(K_{3}\right)\right.\),
    \(0 \oplus 3=3\)
    \(\operatorname{nimber}\left(K_{0}\right) \oplus \operatorname{nimber}\left(K_{2}\right)\),
    \(0 \oplus 2=2\)
    \(\operatorname{nimber}\left(K_{1}\right) \oplus \operatorname{nimber}\left(K_{2}\right)\),
    \(1 \oplus 2=3\)
    \(\left.\operatorname{nimber}\left(K_{1}\right) \oplus \operatorname{nimber}\left(K_{1}\right)\right\}\)
    \(1 \oplus 1=0\)
\(=1\)
```

In general: if we compute nimber $\left(K_{0}\right)$, $\operatorname{nimber}\left(K_{1}\right)$, $\operatorname{nimber}\left(K_{2}\right), \ldots$ in order, then we always use nimbers that we've already computed (because smaller)

- in Python, can do this with for loop:

$\mathrm{k}=\{ \}$	960-4	972-4	984-4
for n in range(0,1000):	961-1	973-1	985-1
$\mathrm{k}[\mathrm{n}]=\operatorname{mex}\left(\left[k[\mathrm{i}]^{\wedge} \mathrm{k}[\mathrm{n}-\mathrm{i}-1]\right.\right.$ for i in range(n$\left.)\right]+$	962-2	974-2	986-2
	963-8	975-8	987-8
print $\mathrm{n}, \mathrm{\prime}$ - ${ }^{\text {- }}$, k[]	964-1	976-1	988-1
	965-4	$977-4$	989-4
def mex(nimbers):	966-7	978-7	990-7
nimbers $=$ set(nimbers)	967-2	979-2	991-2
$\mathrm{n}=0$	968-1	980-1	992-1
while n in nimbers: $\mathrm{n}=\mathrm{n}+1$	969-8	981-8	993-8
	970-2	982-2	994-2
	971-7	983-7	995-7
	period	od 12!	
	(starti	t '72)	
	[Guy \&	ith 1972]	

DYNAMIC PROGRAMMING

How fast? to compute nimber $\left(K_{n}\right)$:

- look up $\approx 4 n$ previous nimbers
- compute $\approx 2 n$ nimsums (XOR)
- compute one mex on $\approx 2 n$ nimbers
- call all this $O(n)$ work "order n "
- need to do this for $n=0,1, \ldots, m$

$$
\Rightarrow \sum_{n=0}^{m} O(n)=O\left(\sum_{n=0}^{m} n\right)=O\left(\frac{m(m+1)}{2}\right)=O\left(n^{2}\right)
$$

POLYNOMIAL TIME - GOOD

Variations: dynamic programming also works for:

- Kayles on a cycle
(1 move reduces to regular Kayles \Rightarrow 2nd player win)
- Kayles on a tree: target vertex or 2 adj. vertices

- Kayles with various ball sizes: hit 1 or 2 or 3 pins (still 1st player win)

Cram: impartial Domineering

- board $=m \times n$ rectangle, possibly with holes
- move $=$ place a domino (make 1×2 hole)

Symmetry strategies:
[Gardner 1986]

- even \times even: reflect in both axes
\Rightarrow 1st player win
- even \times odd: play 2 center \square s then reflect in both axes
\Rightarrow 1st player win
- odd \times odd: OPEN who wins?
$\underline{\text { Liner Cram }}=1 \times n$ cram
- easy with dynamic programming
- also periodic [Guy \& Smith 1956]
- 1×3 blocks still easy with DP
- OPEN : periodic?

Horizontal Cram: 1 only
\Rightarrow sum of linear crams!
$2 \times n$ Cram: Nimbers OPEN Let's play!
$3 \times n$ Cram: winner OPEN
(dynamic programming doesn't work)

MIT OpenCourseWare
http://ocw.mit.edu

ES. 268 The Mathematics in Toys and Games

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

