Minesweeper is NP-Complete

Notes by Melissa Gymrek
Based on a paper by Richard Kayes 2000

Minesweeper

- Reducing 3SAT to generalized Minesweeper
- Reducing cSAT to well-know version of Minesweeper

General Minesweeper

MINESWEEPER: $\{G, \xi \mid G$ is a graph and ξ is a partial integer labeling of G, and G can be filled
with mines in such a way that any node v labeled m has exactly m neighboring nodes containing mines.\}

Deciding if a graph is in the MINESWEEPER language is NPcomplete:

- Polynomial time verification
- Reduce from 3SAT in polynomial time

Polynomial Time Verification

- For each node v labeled m:
- Check that exactly m neighbors contain mines
- O(E) time - clearly polynomial

Reduce from 3SAT

- Function f converts a 3SAT instance to a MINESW instance in polynomial time
- Z is satisfiable iff w is satisfiable

3SAT Review

Boolean 3CNF formula:
$(A \vee B \vee C)^{\wedge}(\sim A \vee D \vee \sim C)^{\wedge} \ldots$
N variables (A, B, C, D) in this instance M clauses (here 2 clauses are shown)

Question: Is this boolean formula satisfiable?

3SAT \rightarrow MINESWEEPER

Make a gadget for each variable

3SAT \rightarrow MINESWEEPER

For clause ($\mathrm{A} \vee \mathrm{B} \vee \sim \mathrm{C}$)

Connect to variable gadgets

Make a gadget for each clause

3SAT \rightarrow MINESWEEPER

- Conversion took polynomial time:
- 1 gadget for each of the N vars $=\mathrm{O}(\mathrm{N})$
- 1 gadget for each of M clauses $=\mathrm{O}(\mathrm{MN})$
- Total $\mathrm{O}(\mathrm{N}(\mathrm{M}+1))$ time

Minesweeper as we know it

> MINESWEEPER Problem: Given a rectangular grid partially marked with numbers and/or mines, some squares being left blank, determine whether there is some pattern of mines in the blank squares giving rise to the numbers seen.

Deciding if a graph is in the MINESWEEPER language is NPcomplete:

- Polynomial time verification
- Reduce from cSAT in polynomial time

Wire

Image by MIT OpenCourseWare.

Either all the x's or all the x"s are mines. If it is the x's, we call it "true", if the x"s, we call it "false"

Manipulating Wires

Figure 7. (a) A bent wire. (b) A terminated wire..
(c) Springer-Verlag New York. All rights reserved.This content is excluded from our Creative Commons license.

For more information, see|http://ocw.mit.edu/fairuse.
Kaye, Richard. "Minesweeper is NP-complete." Mathematical Intelligencer 22, no. 2 (2000): 9-15.0 \square

Manipulating Wires

Figure B. A three-way splitter.
(c) Springer-Verlag New York. All rights reserved.This content is excluded from our Creative Commons license.

For more information, see lhttp://ocw.mit.edu/fairuse.
Kaye, Richard. "Minesweeper is NP-complete." Mathematical Intelligencer 22, no. 2 (2000): 9-15.

NOT gate

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$																				
$\mathbf{1}$	$\mathbf{1}$																					
$\mathbf{1}$	x	x^{\prime}	$\mathbf{1}$	x	x^{\prime}	$\mathbf{1}$	x	x^{\prime}	$\mathbf{3}$	x	$\mathbf{3}$	$\mathbf{1}$	x^{\prime}	x	$\mathbf{1}$	x^{\prime}	x	$\mathbf{1}$	x^{\prime}	x	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$																		
									$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$											

Image by MIT OpenCourseWare.
Inverts the sign of a wire

More gates

- We can now manipulate/invert wires
- Cross wires? First make planar XOR, then use XOR and three way splitter to cross wires
- We have NOT, and AND, universal!

More gates

Figure 11. Crossing two wires with three xoh gates.

Figure 12. Making an xor gate with AND and NOT gates.
(c) Springer-Verlag New York. All rights reserved. This content is excluded from our Creative Commons license.

For more information, seelhttp://ocw.mit.edu/fairuse.
Kaye, Richard. "Minesweeper is NP-complete." Mathematical Intelligencer 22, no. 2 (2000): 9-15.

AND gate

Figure 13. An and gate.
(c) Springer-Verlag New York. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see |http://ocw.mit.edu/fairuse.
Kaye, Richard. "Minesweeper is NP-complete." Mathematical Intelligencer 22, no. 2 (2000): 9-15.

NAND is universal!

- $(A$ nand $A)$ nand $(B$ nand $B)=A \vee B$
- $(A$ nand $B)$ nand $(A$ nand $B)=A^{\wedge} B$
- $(A$ nand $A)=\sim A$

Tetris is NP-complete

Ron Breukelaar, Erik Demaine,

Susan Hohenberger,
Hendrik Jan Hoogeboom,
Walter Kosters, David Liben-Nowell
published 2004

In Honor of your Intellectual Contribution to the Art of Setris,
FOR PROVING NP-COMPLETENESS IN MAXIMIZATION OF LINES, tetrises, pieces played, or minimization of square height,
we masters of the Hawward Setris Saciety hereliy confer the title of

Tetris Master
 "pon

Erik D. Demaine

on the sixtenth day of the twelth manth in the year 17 Anna Setri (2002)

3-Partition

- Given 3 s integers $a_{1}, a_{2}, \ldots, a_{3 s}$, can you partition into s triples with the same sum?
- Know the sum must be $T=\sum a_{i} / s$
- This problem is strongly NP-complete: NP-complete even if a_{i} numbers are $s^{0(1)}$

s triples

Initial Board

(it is possible to actually get here)

Piece Sequence

- For each input a_{i} :

Failure to Launch

(h) *

(f) *

(g)

(i)

Forced Moves

Finale Pieces

Finale Pieces

Finale Pieces

Finale Pieces

Finale Pieces

Finale
Pieces

Summary

- If there's a 3-partition, can win Tetris: Get tons of lines, Tetrises, live forever, etc.
- If there's no 3-partition, must lose Tetris: Die, no lines, no Tetrises, etc.

Open Problems

- What if the initial board is empty?
- What about Tetris with $\mathrm{O}(1)$ columns?
- What about Tetris with $\mathrm{O}(1)$ rows?

- What if every move drops from high up (no last-minute slides)?
- Is two-player Tetris PSPACE-complete?
- What can we say about online (regular) Tetris?

MIT OpenCourseWare
http://ocw.mit.edu

ES. 268 The Mathematics in Toys and Games

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms|.

