Complexity of Games \& Puzzles [De maine, Hearn \&̛ many others]

Constraint Logic [Hearn \& Demaine 2009]

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Constraint Graphs

$$
\begin{aligned}
& \text { Machine = graph, } \\
& \text { red of } 6 \text { lue edges }
\end{aligned}
$$

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Constraint Graphs

Machine state
 =orientation

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Constraint Logic

> Rule: at least 2 units
> incoming at a vertex

Move: reverse an edge, preserving Rule
Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

AND vertex

Rule: at least 2 units
incoming at a vertex

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

SPLIT vertex

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

OR vertex

Rule: at least 2 units
incoming at a vertex

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Decision Problem

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Constraint Logic [Hearn \& Demaine 2009]

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Decision Problem

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Sliding -Block Puzzles

DADSPUZZLER Few solve it

 IT CAN BE DONE
"TAKE ONE HOME"

Courtesy of Dr. Jim Starer. Used with permission.

Sliding-Block Puzzles [Hearn \& Demaine 2002]

(a) AND

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Sliding-Block Puzzles [Hearn \& Demaine 2002]

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Wiring Vertices Together

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Red-Blue Conversion

assume an even number of conversions
Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Red-Blue Conversion

assume an even number of conversions
Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Boole an Formulas

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Quantified Boole an Formulas ($Q \mathcal{B F}$)

$$
\forall x \exists y \forall w \cdots \exists z[(x \vee y) \wedge \cdots \wedge(\bar{z} \vee x \vee \bar{w})]
$$

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Existential Quantifier

satisfied out

Universal Quantifier

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Latch

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Universal Quantifier

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Crossover Gadget

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

OR from
 Protector OR

(b) Protected $O R$.

H

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Rush Hour [Hearn \& Demaine 2002]

(b) AND

(c) Protected OR

PS PACE-comple teness Known[Flake \& Baum 2002]
Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Triangular Rush Hour

[Hearn \& Demaine 2009]

(a) AND vertex

(b) Connector

(c) OR vertex

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Open: 1×1 Rush Hour [Tromp ơ Cilibrasi 2008]

- P or $\operatorname{PS} P \mathcal{A C E}$-complete or ..?

Image courtesy of John Tromp. Used with permission.

Plank Puzzles

[Hearn 2004]

output

(a) AND

(b) OR

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Sokoban [Hearn \Leftarrow Demaine 2002]

PS PACE-comple teness Known [Culberson 1998]
Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Constraint Logic [Yearn \& De maine 2009]

 EComputation

Robert A. M earn
trike

Games, Puzzles,

2 players (game)
team, imperfect info Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Inform plc.

Constraint Logic [Hearn \& Demaine 2009]

0 players
(simulation)

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Amazons

[Hearn 2005]

(a) CHOICE

(b) AND

(c) FANOUT

(d) OR

(e) VARIABLE

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine.
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

MIT OpenCourseWare
http://ocw.mit.edu

ES. 268 The Mathematics in Toys and Games

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms|.

