The Action Potential

Short Review Session (about 15 slides)
One Review Problem (about 15 slides)

Review for HST131/N200
B M Hooks
25 Sep 05

The Generic HST130/N200 Exam
 Four Pieces of Advice from Mac:

(1) Write your name on EVERY page.
(2) Short answer means SHORT answer. (space provided)
(3) Leave no questions blank (unless you intend to)
(4) Multiple choice:

Circle ALL that apply
... versus ...
Circle THE BEST answer
Example:
Chromosomes contain which of the following? Circle ALL that apply:
a. Protein
b. Nucleic Acid
c. Obi-Wan Kenobi
d. Lipid rafts

Last Bit of Advice

Please study hard for the exam.
It will be difficult. The questions will address a variety of levels of knowledge, ranging from the very general (which everyone will know) to the very specific (which fewer people will know).

The exam is intended to be challenging, making it unlikely that everyone will have a perfect score.

Material and Gratuitous Neuroanatomy Plug

Our material in the first block is somewhat less clinical and more basic science that that which follows in neuroanatomy. (HST)

Neuroanatomy will have a rapid pace and cover a lot of material:
-Please do a good job the lab assignments, as they aid understanding of the material and the lab
-The first neuroanatomy lab has an assignment and may occur on the Friday following the exam.

How Does Myelin Affect Conduction Velocity?

$$
\begin{aligned}
& \text { Length Constant: } \lambda=\sqrt{r_{m} / r_{i}} \\
& \qquad \begin{array}{c}
r_{m}=R_{m} / 2 \pi a \\
r_{i}=R_{i} / \pi a^{2} \\
c_{m}=c_{m} 2 \pi a
\end{array}
\end{aligned}
$$

Velocity: $v_{\text {(proportional to) }} \sqrt{(a D) /\left(2 R_{i} C_{m}\right)}$

D = Channel Density

The basic Action Potential drawing

The basic gates drawing for sodium currents

Voltage Protocol ("Experiment") to Test Threshold

Voltage Protocol ("Experiment") to Test Threshold

What's Happening at Each Point of the AP?

What's Happening at Each Point of the AP?

$$
\begin{array}{lcc}
0 & 1 & 2 \\
& \text { Time }(\mathrm{ms}) &
\end{array}
$$

What's Happening at Each Point of the AP?

What's Happening at Each Point of the AP?

Voltage Protocol to Test Refractory

What's Happening at Each Point of the AP?

Sample Question:
A voltage clamp experiment was performed in which a neuron was stepped from -80 mV to 0 mV and then back to -80 mV (the protocols are shown). The $\mathrm{P}(\mathrm{V})$ curves for the " m^{3} " gate and "h" gate are shown below. The time constants of activation and inactivation are 0.5 and 5 msec , respectively.

How study sodium current alone?
Draw the sodium current in response to the following voltage steps. Assume peak $\mathrm{Na}+$ conductance is 120 nS and reversal potential for sodium is +40 mV :

Potentially Helpful Equations:

$$
\begin{aligned}
& \mathrm{I}=\mathrm{N}_{\text {channels }} * \gamma_{\text {channel }} * \mathrm{P}_{\text {open }} *\left(\mathrm{~V}_{\mathrm{m}}-\mathrm{V}_{\text {reversal }}\right) \\
& \mathrm{I}=\mathrm{G}_{\max } * \mathrm{P}_{\text {open }} *\left(\mathrm{~V}_{\mathrm{m}}-\mathrm{V}_{\text {reversal }}\right) \\
& \text { And, if } \mathrm{P}_{\text {open }}=1.0 \text {, then } \mathrm{I}=\mathrm{I}_{\text {max: }} \\
& \mathrm{I}_{\max }=\mathrm{G}_{\max } *\left(\mathrm{~V}_{\mathrm{m}}-\mathrm{V}_{\text {reversal }}\right)
\end{aligned}
$$

Determine peak $\mathrm{Na}+$ current using $\mathrm{I}=\mathrm{V} / \mathrm{R}=\mathrm{VG}$. At $0 \mathrm{mV},-40 \mathrm{mV}$ driving force and 120 nS conductance. $\mathrm{I}_{\max }=-4.8 \mathrm{nA}$. (Negative since $\mathrm{Na}+$ will be inward current.) At $-80 \mathrm{mV},-120 \mathrm{mV}$ driving force and 120 nS conductance.

Determine initial current.
Since we assume the clamp has been at -80 mV for a long time before the recording, h gates are all open $(\mathrm{P}=1.0)$ and m^{3} gate are all closed $(\mathrm{P}=0.0)$. Thus, open probability is zero and there is no current.

Now step to +0 mV . The steady state open probability is about 1.0 for m^{3} and 0.0 for h gates. However, it will take a certain amount of time to reach these probabilities.
-Using the time constant, we see that, after 1 ms is: 2 time constants for m^{3} (so $1-\mathrm{e}^{-\mathrm{t} / \mathrm{tau}}=1-\mathrm{e}^{-2}=0.86$) and $1 / 5$ th time constants for h (so $\mathrm{e}^{-t / \text { tau }}=\mathrm{e}^{-0.2}=0.81$).
-Thus, $\mathrm{P}_{\text {open }}$ at 1 ms is $(0.86) *(0.81)=.70$

Time (in time constants)
$\mathrm{F}(\mathrm{t})=\mathrm{B}+(\mathrm{A}-\mathrm{B})\left(\mathrm{e}^{-t / t a u}\right)$
From the graph, we take: For $m^{3}, A=0$ and $B=1$. For $h, A=1$ and $B=0$.

$$
\begin{aligned}
& 1 \text { tau }=63 \% \\
& 2 \text { tau }=86 \% \\
& 5 \text { tau }=99 \%
\end{aligned}
$$

Now step to +0 mV . Use a similar strategy for 20 ms . The steady state open probability is about 1.0 for m^{3} and 0.0 for h gates. However, it will take a certain amount of time to reach these probabilities.
-Using the time constant, we see that, after 20 ms is: 40 time constants for m^{3} (so $1-\mathrm{e}^{-\mathrm{t} / t a u}=1-\mathrm{e}^{-40}=1.00$) and 4 time constants for h (so $\mathrm{e}^{-\mathrm{t} / \mathrm{tau}}=\mathrm{e}^{-4}=0.02$).
-Thus, $\mathrm{P}_{\text {open }}$ at 1 ms is $(1.00) *(0.02)=.02$

$\mathrm{F}(\mathrm{t})=\mathrm{B}+(\mathrm{A}-\mathrm{B})\left(\mathrm{e}^{-t / t a u}\right)$
From the graph, we take: For $\mathrm{m}^{3}, \mathrm{~A}=0$ and $\mathrm{B}=1$. For $h, A=1$ and $B=0$.

$$
\begin{aligned}
& 1 \text { tau }=63 \% \\
& 2 \text { tau }=86 \% \\
& 5 \text { tau }=99 \%
\end{aligned}
$$

Update plot for maximal currents and calculated currents at three time points:
$\mathrm{t}=0 \mathrm{~ms}$: 0.00 of \max
$\mathrm{t}=1 \mathrm{~ms}: 0.70$ of $\max ($ at 0 mV$)(0.7) *(-4.8)=3.36$
$\mathrm{t}=20 \mathrm{~ms}: 0.02$ of $\max ($ at 0 mV$)(0.02) *(-4.8)=0.10$

Sketch in the currents.
What happens after we step back to -80 mV ?

At -80 mV , maximal current changes instantly with the driving force, but $\mathrm{P}_{\text {open }}$ does not instantly change $\mathrm{t}=1 \mathrm{~ms}: 0.70$ of max (at -80 mV) (0.7)*(-14.4)=10.08 $\mathrm{t}=20 \mathrm{~ms}: 0.02$ of $\max (\mathrm{at}-80 \mathrm{mV})(0.02) *(-14.4)=0.29$

Now we apply a drug that prevents inactivation. Now draw the current over time for the following voltage steps.

This makes it easier ...

This makes it easier ...
$\mathrm{P}_{\text {open }}$ is now the same as the m^{3} probability (already calculated). Removing inactivation does not affect $\mathrm{I}_{\text {max }}$ (already calculated). So ...

Update plot for maximal currents and calculated currents at three time points:
$t=0 \mathrm{~ms}$: 0.00 of max
$\mathrm{t}=1 \mathrm{~ms}: 0.86$ of $\max ($ at 0 mV$)(0.86)^{*}(-4.8)=-4.13$
$\mathrm{t}=20 \mathrm{~ms}: 1.00$ of $\max ($ at 0 mV$)(1.00) *(-4.8)=-4.8$

And add the points following the step to -80 mV .
At -80 mV , maximal current changes instantly with the driving force, but $\mathrm{P}_{\text {open }}$ does not instantly change. $\mathrm{t}=1 \mathrm{~ms}: 0.86$ of $\max ($ at $-80 \mathrm{mV})(0.86) *(-14.4)=-12.38$
$\mathrm{t}=20 \mathrm{~ms}: 1.00$ of $\max (\mathrm{at}-80 \mathrm{mV})(1.00) *(-14.4)=-14.4$

