Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey

Synapses and plasticity

Outline

- Chemical synapses
- Presynaptic function
- Postsynaptic function Receptor types
- Synaptic Plasticity

Chemical Synapses

- Have synaptic delay
 - 200 μ s non-enzymatic reaction
 - Neurotransmitter release mediated through local, transient Ca⁺⁺
 - Binds SNARE complex
- Are Unidirectional
- Release amino acids, small molecules, peptides
- CNS synapses less reliable than NMJ

Types of Receptors

- Receptor dictates whether excitatory or inhibitory
- Excitatory
 - Non-selective cation (Na⁺, K⁺) channels will depolarize
 - Driving force of Na⁺ dominates
 - Glutamate R, AChR
- Inhibitory
 - K+ and Cl- channels will hyperpolarize or **shunt** depolarizing responses
 - Do not take V_m past threshold
 - GABAR, glycine R, 5-HT R

Ionotropic vs Metabotropic

Ionotropic R - linked directly to ion channel

Fast and localized

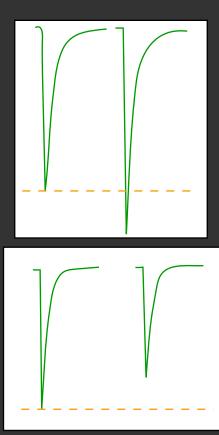
Metabotropic R – Linked to G proteins

- Slow and more widespread effects
- Can open K+ channels, inhibit Ca⁺⁺ entry
- Impinge on various signaling pathways
 - cAMP, cGMP, PLC
- Are hijacked by cholera toxin and pertussis toxin

Glutamate receptors

- AMPA Receptor
 - Fast, desensitizing
 - Most often Na+/K+, but some can pass Ca⁺⁺ (RNA editing)
 - Voltage independent
- NMDA Receptor
 - Slower time course increased Glutamate affinity
 - Voltage-dependent Mg⁺⁺ blockade
 - Highly Ca⁺⁺ permeable

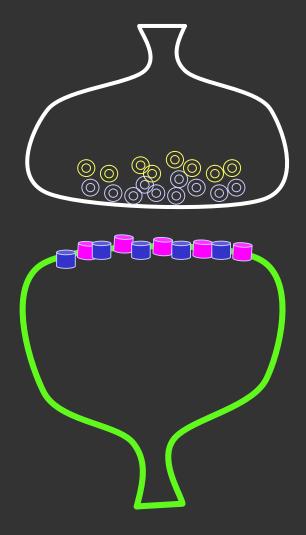
GABA_A Receptors


- Anion Selective
- Structurally similar to AChR
- Site for many sedatives
 - Barbiturates, benzodiazepines potentiate response
- Typically inhibitory, but can be excitatory at times
 - Due to changes in Nernst potential

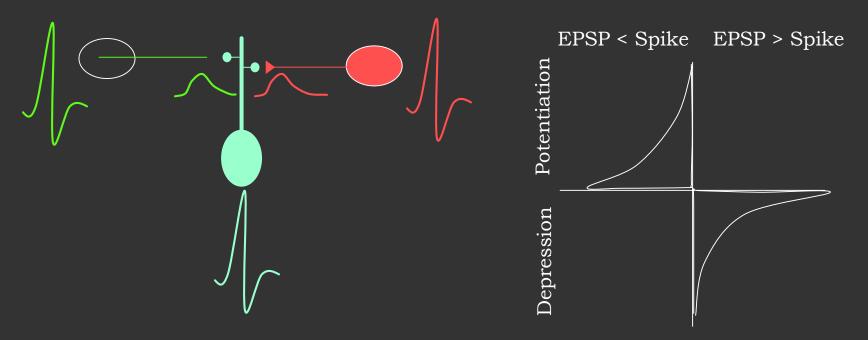
Synaptic Plasticity

- Short Term \rightarrow msec sec
- Synaptic Modulation \rightarrow sec min
- Long term modifications \rightarrow min hours
 - Spike Time Dependent Plasticity
 - Long Term Potentiation
 - Long Term Depression
- Homeostatic plasticity days

Short term plasticity


- Presynaptic cell stimulated twice, in rapid succession
- Facilitation
 - second response is larger than first
 - Due to residual Ca⁺⁺ in presynaptic terminal
- Depression
 - Second response is smaller than first
 - Depletion of vesicle pool or receptor desensitization

Synaptic Modulation


• Presynaptic:

- Ca⁺⁺ channels
- K⁺ channels
- Probability of release
- vesicle pool size
- Postsynaptic
 - Receptor number
 - Channel Conductance
 - Nt reuptake

Potentiation & Depression

- Spike time dependent plasticity
 - Reward synapses that lead to spiking
 - Punish those that do not

CA3-CA1 LTP

- LTP: A long-lasting increase in synaptic strength (AMPA-R currents)
 - First studied in the hippocampus
- Tetanus-
 - Many stimulus presented in short time (100 Hz)

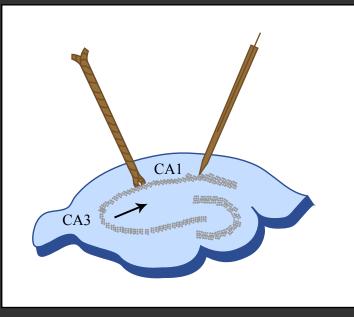
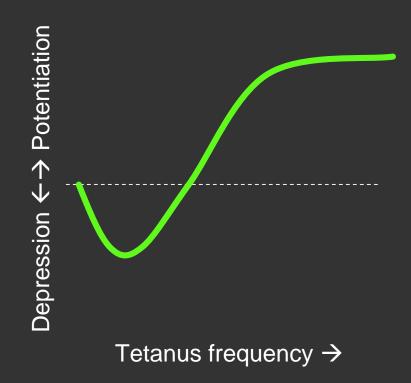



Figure courtesy of MIT OCW.

- Like multiple pairings of STDP in a very short time
- Requires Ca⁺⁺ influx via NMDA-R activation
 - So it requires glutamate AND postsynaptic Depolarization
- Mechanism: insertion of postsynaptic AMPARs
 - Though some evidence for presynaptic changes exist

Long Term Depression

- The opposite of LTP
- Long lasting reduction in synaptic sensitivity
 - Removal of AMPARs
- Induced by low frequency tetanus
 - Not enough stimulation to consistently drive the cell
- Requires Ca⁺⁺ entry, but much lower levels than LTP

Other plasticity

- Mossy fiber-CA3 LTP: presynaptic expression
 - Decreased facilitation post LTP
- Homeostasis
 - Keeps average activity at a constant level in a cell
 - Long term disuse causes global increase in synaptic strength

- What is the evidence that neurotransmitter release is not an enzymatic process?
- If a glutamate receptor fluxed only K+, would it be considered excitatory or inhibitory?
- A high frequency tetanus given in the presence of APV will lead to what kind of change in postsynaptic response?