
T CELL MEDIATED IMMUNITY (CMI)

NK CELLS

Experimental protocol for determining role of T cells and antibodies in immunity to an infection

Cell mediated immunity to Listeria monocytogenes

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Properties of Cell-Mediated Immunity

• T cells recognize and respond to foreign protein antigens only when a peptide fragment of the antigen is presented in a complex with an MHC molecule on the surface of an APC.

Properties of Cell-Mediated Immunity

- T cells recognize and respond to foreign protein antigens only when a peptide fragment of the antigen is presented in a complex with an MHC molecule on the surface of an APC.
- Therefore, cell mediated immunity is directed at cells that have intracellular antigens which are processed and presented as peptide-MHC complexes on their surface.

Types of Cell-Mediated Immune Responses

- CD4⁺ T_H1/delayed type hypersensitivity (DTH) responses
- Th2 responses
- Cytolytic T lymphocyte responses

Two Stages of T cell activation in CMI: Naïve and Effector T cell Activation

- Antigen recognition by naïve T cells in lymphoid organs initiates proliferation and differentiation into effector cells.
- Antigen recognition by effector T cells at peripheral sites of antigen triggers the efffector functions that eliminate the antigens.

Migration Of Naive and Effector T. Lymphocytes

Activation of naive and effector T cells by antigen

Types of cell-mediated immunity

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Types of cell-mediated immunity

Immunity = protection

Hypersensitivity = tissue damage

Hypersensitivity is mediated by the same mechanisms that impart immunity

Much of what is known about mechanisms of immunity has been learned from studying hypersensitivity reactions

Th1 Mediated CMI and Delayed Type Hypersensitivity (DTH)

• CMI in which the ultimate effector cell is the <u>activated macrophage.</u>

Th1 Mediated CMI and Delayed Type Hypersensitivity (DTH)

- CMI in which the ultimate effector cell is the activated macrophage.
- Primary defense against microbes that reside within phagocytes such as *Listeria monocytogenes* and mycobacteria.

Th1 Mediated CMI and Delayed Type Hypersensitivity (DTH)

- CMI in which the ultimate effector cell is the <u>activated macrophage.</u>
- Primary defense against microbes that reside within phagocytes such as *Listeria monocytogenes* and mycobacteria.
- The Th1 cells express cytokines and surface molecules that stimulate the microbiocidal activates of macrophages and promote inflammation.

Th1 Mediated CMI and Delayed Type Hypersensitivity (DTH)

- CMI in which the ultimate effector cell is the activated macrophage.
- Primary defense against microbes that reside within phagocytes such as *Listeria monocytogenes* and mycobacteria.
- The Th1 cells express cytokines and surface molecules that stimulate the microbiocidal activates of macrophages and promote inflammation.
- Th1 responses against soluble protein antigens or modified tissue proteins can cause tissue injury. In these cases the response is called delayed type hypersensitivity (DTH).

Components of a DTH response

• Sensitization: primary exposure to antigen (e.g. *Tuberculosis* infection, poison ivy exposure).

Components of a DTH response

- Sensitization: primary exposure to antigen (e.g. *Tuberculosis* infection, poison ivy exposure).
- Challenge:subsequent exposure to antigen leads to a characteristic response over 24-48 hours.

Components of a DTH response

- Sensitization: primary exposure to antigen (e.g. *Tuberculosis* infection, poison ivy exposure).
- Challenge:subsequent exposure to antigen leads to a characteristic response over 24-48 hours.
- 4 hrs: Neutrophil infiltrate around post-capillary venules

Components of a DTH response

- Sensitization: primary exposure to antigen (e.g. *Tuberculosis* infection, poison ivy exposure).
- Challenge:subsequent exposure to antigen leads to a characteristic response over 24-48 hours.
- 4 hrs: Neutrophil infiltrate around post-capillary venules
- 12 hrs: Lymphocyte and monocyte infiltration

Components of a DTH response

- Sensitization: primary exposure to antigen (e.g. *Tuberculosis* infection, poison ivy exposure).
- Challenge:subsequent exposure to antigen leads to a characteristic response over 24-48 hours.
- 4 hrs: Neutrophil infiltrate around post-capillary venules
- 12 hrs: Lymphocyte and monocyte infiltration
- 18-24 hrs: induration (tissue swelling due to fibrinogen and cellular infiltrates)

Delayed-type hypersensitivity

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Morphology of delayed type hypersentivity (DTH) reaction

Sequence of Events in CMI/DTH

- Initiation of T cell response
 - antigen/infectious organism brought to lymph node; naïve T cells migrate to lymph node; CD4⁺ T cells activated by antigen, proliferate and become effector T cells
- Migration of Effector T cells to site of antigen/infection
- Effector phase
 - Reactivation of T cells by antigen leading to cytokine secretion; macrophage activation; inflammation

Initiation of Immune responses

The problem: How do rare antigen-specific lymphocytes find and respond to antigen?

- 1. Systems of antigen collection bring antigen to sites where immune responses are initiated.
- 2. Lymphocytes recirculate among lymphoid organs and peripheral tissues, and are activated at appropriate sites.
- 3. Amplification mechanisms enhance responses of antigen-specific lymphocytes

Antigen capture and collection by the immune system

Dendritic cell migration and maturation

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

The induction phase of cell-mediated immunity

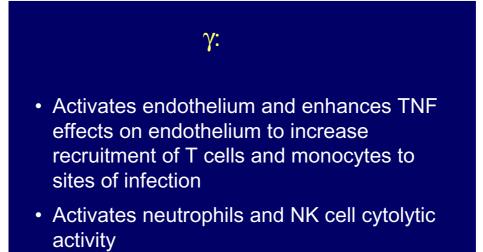
Expansion of antigen specific CD4⁺ T cells in lymph node

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

The effector phase of cell-mediated immunity

Migration of effector and memory T cells to sites of infection

Activation and effector functions of macrophages in CMI


See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

General properties of cytokines

Biologic Actions of selected cell cytokines

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Biologic Actions of Interferon- γ

γ:

- Net effect is to promote macrophage dependent inflammatory responses and to inhibit IgE-dependent, eosinophil rich response
- IFN-γ knockout mice are highly susceptible to intracellular microbial infections

Role of IL-12, IL-18 and IFN- γ in CMI

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Role of IL-12 and IFN- γ in CMI

Cytokine	Cellular sources	Principal functions in cell-mediated immunity
IL-12	Macrophages, dendritic cells (professional APCs)	Differentiation of naïve CD4 ⁺ T cells into Th1 effector cells. Increased IFN-γ production by T cells
IL-18	Macrophages	Increased IFN-γ production by T cells; synergizes with IL-12
IL-2	T cells	Autocrine growth factor for T cells, responsible for clonal expansion of antigen-reactive T cells
TNF	Macrophages, T cells	Recruitment of leukocytes by endothelium
Chemokines	Endothelial cells, macrophages, T cells	Leukocyte recruitment
IFN-γ	T cells, NK cells	Macrophage activation
IL-4, IL-13, IL-10	Th2 cells (IL-10 produced by many cell types)	Inhibition of macrophage activation and DTH reactions Eosinophil-rich inflammation

Granulomatous inflammation: A chronic form of DTH

Subsets of CD4⁺ helper T Cells

Figure removed due to copyright restrictions.

Cytokine Production by $T_H 1$ and $T_H 2$ Cells

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Properties of Th1 and Th2 Subsets

Functions of Th1 and Th2 Subsets

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Functions

- B cell Ig heavy chain class switching to IgE isotype
- Inhibits switching to IgG2a and IgG3 (in mice) which are stimulated by IFN- γ
 - These are complement and FcR binding isotypes
- Stimulates T_H2 differentiation from naïve T cells
- Autocrine growth factor for T_H^2 cells
- Antagonizes macrophage-activating factors of IFN- $\!\gamma$

Differentiation of $T_H 1$ and $T_H 2$ Subsets

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Differentiation of Helper T Cell Subsets

- T_H1 and T_H2 cells represent polarized forms of CD4⁺ effector T cells differentiated from naïve CD4⁺ T cells.
- Differentiation occurs in secondary lymphoid tissues, in response to antigen, costimulator and cytokine signals.

Control of Helper T Cell Subset Differentiation: Phenomena

- Cytokines
 - IL-4 T_H2
 - IL-12 T_H1
- Signal strength (antigen dose + costimulation)
 - High T_{H}^{2}
 - Low $T_H 1$
- · Genetic background
 - Balb/C $T_{H}2$
 - B10.D2 T_H1

Control of Helper T Cell Subset Differentiation: ? Mechanisms

- Acute acting transcription factors:
 - *cmaf*, GATA3, STAT6 stimulate T_H2 cytokine transcription
 - GATA3 inhibits IFN-γ transcription
 - T bet stimulates IFN-γ transcription, represses IL-4, IL-5 expression
- Stable epigenetic changes of cytokine loci
 - hyperacteylation of histones
 - demethylation of DNA
- Cell cycle dependence

Role of Th2 cells in regulating cell-mediated immunity

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Types of cell-mediated immunity

Cytolytic T Lymphocytes (CTLs)

CTL are important effector cells in three settings:

- Intracellular infections (virus, some bacteria)
- Acute allograft rejection
- Tumor rejection

Cytolytic T Lymphocytes (CTLs)

CTLs are mostly CD8⁺, Class I MHC restricted, although there are CD4⁺ CTLs

Cytolytic T Lymphocytes (CTLs)

CTLs are mostly CD8⁺, Class I MHC restricted, although there are CD4⁺ CTLs

• CTLs function by lysing target cells expressing specific peptide-MHC

Cytolytic T Lymphocytes (CTLs)

CTLs are mostly CD8⁺, Class I MHC restricted

- CTLs function by lysing target cells expressing specific peptide-MHC
- Naive CD8⁺T cells (pre-CTLs) cannot lyse target cells; they first must <u>differentiate</u> into mature CTLs

CTL Differentiation (I)

- Differentiation of pre-CTL to CTL occurs in lymphoid tissues
- Two signals required
 - First Signal: Antigen recognition on target cell: cytosolic peptide presented in association with class I MHC
 - Second signal: Costimulators (e.g. B7) or cytokines (IL-2,IFN-γ)

Role of costimulators and helper T cells in the differentiation of CD8⁺ T lymphocytes

Role of costimulators and helper T cells in the differentiation of CD8⁺ T lymphocytes

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Role of costimulators and helper T cells in the differentiation of CD8⁺ T lymphocytes

Cross presentation (cross priming) of CD8⁺ T lymphocytes

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

MHC-Peptide Tetramer

CTL Differentiation (II)

- Acquisition of machinery to perform cell lysis:
 - Develop membrane-bound cytoplasmic granules containing:
 - perforin (cytolysin); granzymes
 - Fas ligand expression
 - Capacity to express cytokines
 - IFN-γ, Lymphotoxin, TNF

Key Features of CTL-Mediated Lysis

- CTL killing is antigen specific:
 - same peptide-MHC antigen that triggered pre-CTL differentiation is required for triggering killing by the mature CTL

Key Features of CTL-Mediated Lysis

- CTL killing is antigen specific:
 - same peptide-MHC antigen that triggered pre-CTL differentiation is required for triggering killing by the mature CTL
- CTL killing requires cell contact:
 - Lytic mechanisms are directed toward the point of contact of TCR with antigen

Key Features of CTL-Mediated Lysis

- CTL killing is antigen specific:
 - same peptide-MHC antigen that triggered pre-CTL differentiation is required for triggering killing by the mature CTL
- CTL killing requires cell contact:
 - Lytic mechanisms are directed toward the point of contact of TCR with antigen
- CTLs themselves are not injured and each CTL can sequentially kill multiple targets

CTC-target cell conjugates

The Process of CTL Mediated Lysis

- Antigen recognition and conjugate formation: TCR-peptide/MHC; CD2/LFA-3; LFA-1/ICAM-1
- Activation of CTL: Signaling by TCR-complex and accessory molecules
- Delivery of a <u>lethal hit</u>: granule exocytosisdelivery of perforin/granzyme into target cell
- Release of CTL
- Programmed death of target cell

Steps in CTL-mediated lysis of target cells

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Delivery of the Lethal Hit (I)

- CTL granules move to region of CTL contact with target cell: cytoskeletal reorganization
- Fusion of granules with plasma membrane and release of contents: Rab dependent process
- **Perforin polymerization**: formation of aqueous channel in target cell membrane:
- Osmotic lysis of target cell (minor role)

(cont'd)

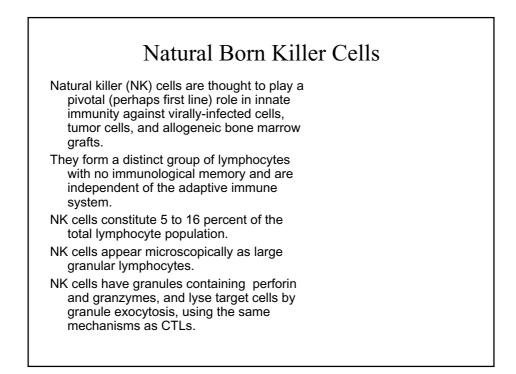
CTL-Mediated Cell Lysis: Perforin

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Delivery of the Lethal Hit (II)

- Granzyme delivery into target cell cytoplasm through perforin pores
- Granzyme B cleavage of Interleukin-1 converting enzyme (ICE)
- ICE-proteolytic cascade leading to activation of DNA cleaving enzymes
- Apoptotic cell death

Mechnisms Of CTL Killing


See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

Pancreatic Insulins Leading to Type ! Diabetes

CD8+T cell mediated autoimmune destruction of cells

Selective CTL Killing of Insulin Secreting β Cells in Autoimmune Diabetes

Figure removed due to copyright restrictions.

Natural Killer cells

Recognition of tartgets by NK cells

Figure removed due to copyright restrictions.

Please see: Fig 12-7 in Abbas, Abul K., Andrew H. Lichtman, and Jordan S. Pober. *Cellular and Molecular Immunology.* Philadelphia, PA: W.B. Saunders Company, 2000. ISBN: 0721682332.

Activating and inhibitory receptors of NK cells

Figure removed due to copyright restrictions.

Please see: Fig 12-8 in Abbas, Abul K., Andrew H. Lichtman, and Jordan S. Pober. *Cellular and Molecular Immunology*. Philadelphia, PA: W.B. Saunders Company, 2000. ISBN: 0721682332.

NK cell inhibitory receptors

See Immunobiology, by Janeway, C., Travers, P., Walport, M. and Capra, J., Garland Publishing, 5th edition, 2001 & Cellular amd Molecular Immunolgy by Abbas, A., Pober, J., and Lichtman, A., W B Saunders; 4th edition, 2000.

NK cell inhibitory receptors