Bphys/Biol E-101 = HST 508 = GEN224

Your grade is based on six problem sets and a course project, with emphasis on collaboration across disciplines.

Open to: upper level undergraduates, and all graduate students. The prerequisites are basic knowledge of molecular biology, statistics, \& computing.

Please hand in your questionnaire after this class. First problem set is due before Lecture 3 starts via email or paper depending on your section TF.

Bio 101: Genomics \& Computational Biology

Week\#1 Intro 1: Computing, Statistics, Perl, Mathematica

Week\#2 Intro 2: Biology, comparative genomics, models \& evidence, applications
Week\#3 DNA 1: Polymorphisms, populations, statistics, pharmacogenomics, databases Week\# 4 DNA 2: Dynamic programming, Blast, multi-alignment, HiddenMarkovModels Week\#5 RNA 1: 3D-structure, microarrays, library sequencing \& quantitation concepts Week\# 6 RNA 2: Clustering by gene or condition, DNA/RNA motifs. Week\#7 Protein 1: 3D structural genomics, homology, dynamics, function \& drug design Week\#8 Protein 2: Mass spectrometry, modifications, quantitation of interactions Week\#9 Network 1: Metabolic kinetic \& flux balance optimization methods
Week\#10 Network 2: Molecular computing, self-assembly, genetic algorithms, neural-nets Week\#11 Network 3: Cellular, developmental, social, ecological \& commercial models
Week\#12 Project presentations
Week\#13 Project Presentations
Week\#14 Project Presentations

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required
Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality
101

acgt

$$
01=c
$$

$$
11=t
$$

5

Post- 300 gat ttg gtcctgtgttcgatcc acagaattcgcacca

Discrete

Continuous

Bits (discrete)

> bit $=$ binary digit
> 1 base $>=2$ bits
> 1 byte $=8$ bits

+ Kilo Mega Giga Tera Peta Exa Zetta Yotta + $\begin{array}{llllllll}3 & 6 & 9 & 12 & 15 & 18 & 21 & 24\end{array}$
- milli micro nano pico femto atto zepto yocto -

Kibi Mebi Gibi Tebi Pebi Exbi
$1024=2^{10} \quad 2^{20} \quad 2^{30} \quad 2^{40} \quad 2^{50} \quad 2^{60}$

Defined quantitative measures

Seven basic (Système International) SI units:
s, m, kg, mol, K, cd, A
(some measures at precision of 14 significant figures)

Quantal: Planck time, length: 10^{-43} seconds, 10^{-35} meters, mol=6.0225 10^{23} entities.

Quantitative definition of life?

Historical/Terrestrial Biology vs "General Biology"
Probability of replication ... of complexity from simplicity (in a specific environment)

Robustness/Evolvability
(in a variety of environments)

Examples: mules, fires, nucleating crystals, pollinated flowers, viruses, predators, molecular ligation, factories, self-assembling machines ${ }_{\text {i0 }}$

Complexity definitions

1. Computational Complexity $=$ speed/memory scaling P, NP
2. Algorithmic Randomness (Chaitin-Kolmogorov)
3. Entropy/information
4. Physical complexity
(Bernoulli-Turing Machine)

Complexity \& Entropy/Information

Why Model?

- To understand biological/chemical data.
(\& design useful modifications)
- To share data we need to be able to search, merge, \& check data via models.
- Integrating diverse data types can reduce random \& systematic errors.

Which models will we search, merge \& check in this course?

- Sequence: Dynamic programming, assembly, translation \& trees.
- 3D structure: motifs, catalysis, complementary surfaces - energy and kinetic optima
- Functional genomics: clustering
- Systems: qualitative \& boolean networks
- Systems: differential equations \& stochastic
- Network optimization: Linear programming

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required
Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality

Elements of RNA-based life: C,H,N,O,P

Useful for many species:
$\mathrm{Na}, \mathrm{K}, \mathrm{Fe}, \mathrm{Cl}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Mo}, \mathrm{Mn}, \mathrm{S}, \mathrm{Se}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}, \mathbf{S i}$

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	$\begin{array}{r} 1 \\ H \end{array}$																		$\begin{gathered} 2 \\ \mathrm{He} \end{gathered}$
2	Li	$\begin{gathered} 4 \\ \mathrm{Be} \\ \hline \end{gathered}$												$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & \hline \end{aligned}$			$\begin{aligned} & 9 \\ & F \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \end{aligned}$
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$												$\begin{aligned} & 13 \\ & \text { Al } \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$		$\begin{aligned} & 16 \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
4	19	20		$\begin{aligned} & 21 \\ & \mathrm{SC} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathrm{Ti} \end{aligned}$	$\begin{aligned} & 23 \\ & V \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{gathered} 25 \\ \mathrm{Mn} \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{gathered} 27 \\ \mathrm{CO} \end{gathered}$	28	$\begin{gathered} 29 \\ \mathrm{Cu} \end{gathered}$	30	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & K r \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$		$\begin{aligned} & 39 \\ & Y \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{TC} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{gathered} 46 \\ \mathrm{Pd} \end{gathered}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ \text { । } \end{gathered}$	$\begin{aligned} & 54 \\ & \times \mathrm{e} \end{aligned}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 56 \\ \mathrm{Ba} \\ \hline \end{array}$	*	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$	$\begin{aligned} & \hline 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & \hline 73 \\ & \text { Ta } \end{aligned}$	$\begin{aligned} & 74 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \mathrm{OS} \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & \text { Ir } \end{aligned}$	$\begin{aligned} & 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ \mathrm{Hg} \end{gathered}$	$\begin{aligned} & 81 \\ & \mathrm{~T} \mid \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \mathrm{P}_{0} \end{aligned}$	$\begin{aligned} & 85 \\ & \mathrm{At} \end{aligned}$	$\begin{aligned} & 86 \\ & \text { Rn } \end{aligned}$
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & 88 \\ & \text { Ra } \\ & \hline \end{aligned}$	**	$\begin{gathered} 103 \\ \mathrm{Lr} \end{gathered}$	$\begin{aligned} & 104 \\ & \text { Rf } \end{aligned}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \end{aligned}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$	$\begin{array}{r} 108 \\ \mathrm{Hs} \end{array}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	$\begin{aligned} & 110 \\ & \text { Uun } \end{aligned}$	$\begin{aligned} & 111 \\ & \text { Uuu } \end{aligned}$	$\begin{aligned} & 112 \\ & \text { Uub } \end{aligned}$	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$	$\begin{aligned} & 114 \\ & \text { Uuq } \end{aligned}$	$\begin{aligned} & 115 \\ & \text { Uup } \end{aligned}$	$\begin{aligned} & 116 \\ & \text { Uuh } \end{aligned}$	117	$\begin{aligned} & 118 \\ & \text { Uuo } \end{aligned}$
*Lanthanoids			*	$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{gathered} 61 \\ \mathrm{Pm} \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \end{gathered}$	$\begin{aligned} & 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & 69 \\ & \text { Tm } \end{aligned}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$		
**Actinoids			**	$\begin{aligned} & 89 \\ & \mathrm{AC} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 92 \\ & U \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{Cm} \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \end{gathered}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$		

Minimal self-replicating units

Minimal theoretical composition: 5 elements: C,H,N,O,P Environment $=$ water, $\mathrm{NH}_{4}{ }^{+}, 4 \mathrm{NTP}^{-} \mathrm{s}$, lipids

Johnston et al. Science 2001 292:1319-1325 RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=11358999\&dopt=Abstract).

Minimal programs

perl -e "print exp(1);"
2.71828182845905
excel: = EXP(1)
2.71828182845905000000000
f77: print* $^{*}, \exp (1 . q 0) \quad 2.71828182845904523536028747135266$
Mathematica: N[Exp[1],100] 2.71828182845904523536028747135266249775
7247093699959574966967627724076630353547594571382178525166427

- Underlying these are algorithms for arctangent and hardware for RAM and printing.
- Beware of approximations \& boundaries.
- Time \& memory limitations. E.g. first two above 64 bit floating point:

52 bits for mantissa ($=15$ decimal digits), 10 for exponent, 1 for $+/-$ signs. 17

Self-replication of complementary nucleotide-based oligomers

$5^{\prime} \operatorname{ccg}+\operatorname{ccg} \quad=>\quad 5^{\prime} \operatorname{ccgccg}$
5' CGGCGG
CGG $+\mathrm{CGG}=>\quad$ CGGCGG
ccgccg

Why Perl \& Mathmatica?

In the hierarchy of languages, Perl is a "high level" language, optimized for easy coding of string searching \& string manipulation. It is well suited to web applications and is "open source" (so that it is inexpensive and easily extended).
It has a very easy learning curve relative to $\mathrm{C} / \mathrm{C}++$ but is similar in a few way to C in syntax.

Mathematica is intrinsically stronger on math (symbolic \& numeric) \& graphics.

Facts of Life 101

Where do parasites come from?

(computer \& biological viral codes)
Over $\$ 12$ billion/year on computer viruses (ref)
(http://virus.idg.net/crd_virus_126660.html) 20 M dead (worse than black plague \& 1918 Flu)

AIDS - HIV-1 (download) (http://www.ncbi.nlm.nih.gov/htbin-

post/Taxonomy/wgetorg? $\mathbf{i d}=11676$)
Polymerase drug resistance mutations
M41L, D67N, T69D, L210W, T215Y, H208Y PISPIETVPVKLKPGMDGPK VKQWPLTEEK IKALIEICAE LEKDGKISKI
c.Copy(dirsystem\&"'LOVE-LETTER-FOR-YOU.TXT.vbs" ${ }_{W}$ GPVKNPVDFREL NKRTQDFCEV

LoveBug

Set dirtemp $=3 \mathrm{D}$ fso.GetSpecialFolder(2)
Set c =3D fso.GetFile(WScript.ScriptFullName) c.Copy(dirsystem\&" \backslash MSKernel32.vbs")
c.Copy(dirwin\&" ${ }^{\text {Win32DLL.vbs") }}$ regruns()
html()
spreadtoemail()
listadriv()

Conceptual connections

Concept

Instructions
Bits
Stable memory
Active memory
Environment
I/O
Monomer
Polymer
Replication
Sensor/In
Actuator/Out Communicate

Computers

Program
0,1
Disk,tape
RAM
Sockets, people AD/DA
Minerals
chip
Factories
Keys,scanner
Printer, motor
Internet, IR

Organisms

Genome
a, c, g, t
DNA
RNA
Water,salts
proteins
Nucleotide
DNA, RNA, protein
1e-15 liter cell sap
Chem/photo receptor
Actomyosin
Pheromones, song

Transistors $>$ inverters $>$ registers $>$ binary adders $>$ compilers $>$ application programs

Self-compiling \& self-assembling

Complementary surfaces

 Watson-Crick base pair (Nature April 25, 1953)(http://www.sil.si.edu/Exhibitions/Science-and-the-Artists-Book/bioc.htm\#27)

Minimal Life:

Self-assembly, Catalysis, Replication, Mutation, Selection

Replicator diversity

Self-assembly, Catalysis, Replication, Mutation, Selection Polymerization \& folding (Revised Central Dogma)

Polymers: Initiate, Elongate, Terminate, Fold, Modify, Localize, Degrade

Maximal Life:

Self-assembly, Catalysis, Replication, Mutation, Selection Regulatory \& Metabolic Networks

Rorschach Test

Growth \& decay dy/dt = ky

$y=A e^{k t} ; e=2.71828 \ldots$
$\mathrm{k}=$ rate constant; half-life $=\log _{\mathrm{e}}(2) / \mathrm{k}$

What limits exponential growth?
Exhaustion of resources
Accumulation of waste products

What limits exponential decay?

Finite particles, stochastic (quantal) limits

Solving differential equations

Mathematica: Analytical (formal, symbolic)
$\operatorname{In}[2]:=$ DSolve $\left[\left\{y^{\prime}[\mathrm{t}]=\mathrm{y}[\mathrm{t}], \mathrm{y}[0]==1\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right]$
$\operatorname{Out}[2]=\left\{\left\{y[t]=E^{t}\right\}\right\}$
Numerical (\&graphical)
NDSolve[$\left.\left\{\mathrm{y}^{\prime}[\mathrm{t}]==\mathrm{y}[\mathrm{t}], \mathrm{y}[0]==1\right\}, \mathrm{y},\{\mathrm{t}, 0,3\}\right]$
Plot[Evaluate[y[t] /. \%], \{t, 0, 3\}]

$$
\begin{aligned}
& 20 \\
& 15 \\
& 10
\end{aligned}
$$

(Hyper)exponential growth

Computational power of neural systems

1,000 MIPS (million instructions per second) needed to derive edge or motion detections from video "ten times per second to match the retina ... The 1,500 cubic centimeter human brain is about 100,000 times as large as the retina, suggesting that matching overall human behavior will take about 100 million MIPS of computer power ... The most powerful experimental supercomputers in 1998, costing tens of millions of dollars, can do a few million MIPS."
"The ratio of memory to speed has remained constant during computing history [at Mbyte/MIPS] ... [the human] 100 trillion synapse brain would hold the equivalent 100 million megabytes."
--Hans Moravec http://www.frc.ri.cmu.edu/~hpm/book97/ch3/retina.comment.html
2002: the ESC is 35 Tflops \& 10Tbytes. http://www.top500.org/

Post-exponential growth \& chaos

$\operatorname{Pop}[\mathrm{k}]][\mathrm{y}]$: $=\mathrm{k}$ y ($1-\mathrm{y})$;
ListPlot[NestList[Pop[1.01], 0.0001, 3000], PlotJoined-> True];

http://library.wolfram.com/examples/iteration/iterate.nb

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required
Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality

Inherited Mutations \& Graphs

Directed Acyclic Graph (DAG)
Example: a mutation pedigree
Nodes $=$ an organism, edges $=$ replication with mutation

Directed Graphs

Directed Acyclic Graph: Biopolymer backbone Phylogeny

Time \rightarrow

Cyclic:

Polymer contact maps
Metabolic \&
Regulatory Nets

Time independent or implicit

System models
 Feature attractions

E. coli chemotaxis

Red blood cell metabolism
Cell division cycle
Circadian rhythm
Plasmid DNA replication
Phage λ switch

Adaptive, spatial effects
Enzyme kinetics
Checkpoints
Long time delays
Single molecule precision
Stochastic expression
also, all have large genetic \& kinetic datsets.

Intro 1: Today's story, logic \& goals

Life \& computers : Self-assembly required
Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality

Bionano-machines

Types of biomodels.
Discrete, e.g. conversion stoichiometry
Rates/probabilities of interactions
Modules vs
"extensively coupled networks"

Maniatis \& Reed Nature 416, 499-506 (2002)

Types of Systems Interaction Models

Quantum Electrodynamics
Quantum mechanics
Molecular mechanics
Master equations
Fokker-Planck approx.
Macroscopic rates ODE
Flux Balance Optima
Thermodynamic models
Steady State
Metabolic Control Analysis Spatially inhomogenous Population dynamics
subatomic
electron clouds
spherical atoms
nm-fs
stochastic single molecules
stochastic
Concentration \& time (C,t) $\mathrm{dC}_{\mathrm{ik}} /$ dt optimal steady state $\mathrm{dC}_{\mathrm{ik}} / \mathrm{dt}=0 \mathrm{k}$ reversible reactions
$\Sigma \mathrm{dC}_{\mathrm{ik}} / \mathrm{dt}=0 \quad$ (sum k reactions)
$\mathrm{d}\left(\mathrm{dC}_{\mathrm{ik}} / \mathrm{dt}\right) / \mathrm{d} \mathrm{C}_{\mathrm{j}} \quad(\mathrm{i}=$ chem.species $) ~ \downarrow$ dCi/dx
as above

Genetic Engineering \& Darwinian Selection
aramano.

Teosinte

$\operatorname{Min}=0.1 \mathrm{~kg}$

Max $=140 \mathrm{~kg}$

Corn

How to do single DNA molecule manipulations?

One DNA molecule per cell

Replicate to two DNAs. Now segregate to two daughter cells
 If totally random, half of the cells will have too many or too few. What about human cells with 46 chromosomes (DNA molecules)?

Dosage \& loss of heterozygosity \& major sources of mutation in human populations and cancer.

For example, trisomy 21, a 1.5 -fold dosage with enormous impact.

Most RNAs < 1 molecule per cell.

See Yeast RNA
25-mer array in
Wodicka, Lockhart, et al. (1997)
Nature Biotech 15:1359-67

(ref)
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=9415887\&dopt=Abstract)

Mean, variance, \&

linear correlation coefficient

Expectation E (rth moment) of random variables X for any distribution $\mathrm{f}(\mathrm{X})$
First moment $=$ Mean μ; variance σ^{2} and standard deviation σ
$\mathrm{E}\left(\mathrm{X}^{\mathrm{r}}\right)=\sum \mathrm{X}^{\mathrm{r}} \mathrm{f}(\mathrm{X}) \quad \mu=\mathrm{E}(\mathrm{X}) \quad \sigma^{2}=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$

Pearson correlation coefficient $\quad \mathrm{C}=\operatorname{cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)\right] /\left(\sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}\right)$
Independent X, Y implies $\mathrm{C}=0$,
but $\mathrm{C}=0$ does not imply independent X, Y. (e.g. $\mathrm{Y}=\mathrm{X}^{2}$)
$\mathrm{P}=\operatorname{TDIST}\left(\mathrm{C}^{*} \mathrm{sqrt}\left((\mathrm{N}-2) /\left(1-\mathrm{C}^{2}\right)\right)\right.$ with dof $=\mathrm{N}-2$ and two tails.
where N is the sample size.

Mutations happen

Binomial frequency distribution as a function of

$$
\mathrm{X} \in\{\text { int } 0 \ldots \mathrm{n}\}
$$

p and $\mathrm{q} \quad 0 \leq \mathrm{p} \leq \mathrm{q} \leq 1 \quad \mathrm{q}=1-\mathrm{p} \quad$ two types of object or event.
Factorials $0!=1 \quad \mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$!
Combinatorics ($\mathrm{C}=\#$ subsets of size X are possible from a set of total size of n)

$$
\begin{aligned}
& \frac{n!}{\mathrm{X}!(n-\mathrm{X})!}=\mathrm{C}(\mathrm{n}, \mathrm{X}) \\
& \mathrm{B}(\mathrm{X})=\mathrm{C}(\mathrm{n}, \mathrm{X}) \mathrm{p}^{\mathrm{X}} \mathrm{q}^{\mathrm{n}-\mathrm{X}} \quad \mu=\mathrm{np} \quad \sigma^{2}=\mathrm{npq} \\
& (\mathrm{p}+\mathrm{q})^{\mathrm{n}}=\sum \mathrm{B}(\mathrm{X})=1
\end{aligned}
$$

$\mathrm{B}(\mathrm{X}: 350, \mathrm{n}: 700, \mathrm{p}: 0.1)=1.53148 \times 10^{-157}$
$=$ PDF[BinomialDistribution[700, 0.1], 350] Mathematica $\sim=0.00=\operatorname{BINOMDIST}(350,700,0.1,0)$ Excel

POiSSOn frequency distribution as a function of $\mathrm{X} \in\{\operatorname{int} 0 \ldots \infty\}$

$\mathrm{P}(\mathrm{X})=\mathrm{P}(\mathrm{X}-1) \mu / \mathrm{X} \quad=\mu^{\mathrm{x}} \mathrm{e}^{-\mu / X} \mathrm{X}!\sigma^{2}=\mu$
n large \& p small $\rightarrow P(X) \cong B(X) \quad \mu=n p$
For example, estimating the expected number of positives in a given sized library of cDNAs, genomic clones, combinatorial chemistry, etc. $\mathrm{X}=\#$ of hits.

Zero hit term $=\mathrm{e}^{-\mu}$

Normal frequency distribution as a function of $X \in\{-\infty \ldots \infty\}$
$\mathrm{Z}=(\mathrm{X}-\mu) / \sigma$
Normalized (standardized) variables
$\mathrm{N}(\mathrm{X})=\exp \left(-\mathrm{Z}^{2} / 2\right) /(2 \pi \sigma)^{1 / 2}$ probability density function
npq large $\rightarrow \mathrm{N}(\mathrm{X}) \cong \mathrm{B}(\mathrm{X})$

One DNA molecule per cell

Replicate to two DNAs.
Now segregate to two daughter cells If totally random, half of the cells will have too many or too few. What about human cells with 46 chromosomes (DNA molecules)?

Exactly 46 chromosomes (but any 46):
$B(X)=C(n, x) p^{x} q^{n-x}$
$\mathrm{n}=46 * 2 ; \mathrm{x}=46 ; \mathrm{p}=0.5$
$B(X)=0.083$
$P(X)=\mu^{x} e^{-\mu} / X!$
$\mu=X=n p=46, P(X)=0.058$

But what about exactly the correct 46 ?
$0.5^{46}=1.4 \times 10^{-14}$

What are random numbers good for?

-Simulations.
-Permutation statistics.

Where do random numbers come from?

$$
X \in\{0,1\}
$$

perl -e "print rand(1);"
0.87988281250 .692291259765625
0.116790771484375
0.1729736328125
excel: = RAND() 0.48543949998926400 .6391685278993980 0.1009497853098360
f77: write(*,'(f29.15)') rand(1) 0.513854980468750 $0.175720214843750 \quad 0.308624267578125$

Mathematica: Random[Real, $\{0,1\}]$
0.7474293274369694
0.50817941131490110 .02423389638451016

Where do random numbers come from really?

Monte Carlo.

Uniformly distributed random variates $X_{i}=\operatorname{remainder}\left(\mathrm{aX}_{\mathrm{i}-1} / \mathrm{m}\right)$
For example, $a=7^{5} \quad m=2^{31}-1$
Given two $X_{j} X_{k}$ such uniform random variates,
Normally distributed random variates can be made
(with $\mu_{\mathrm{X}}=0 \quad \sigma_{\mathrm{X}}=1$)
$X_{i}=\operatorname{sqrt}\left(-2 \log \left(X_{j}\right)\right) \cos \left(2 \pi X_{k}\right) \quad$ (NR, Press et al. p. 279-89)

Mutations happen

Intro 1: Summary

Life \& computers : Self-assembly required Discrete \& continuous models
Minimal life \& programs
Catalysis \& Replication
Differential equations
Directed graphs \& pedigrees
Mutation \& the Single Molecules models
Bell curve statistics
Selection \& optimality

Computation and Biology share a common obsession with strings of letters, which are translated into complex 3D and 4D structures. Evolution (biological, technical, and cultural) will probably continue to act via manipulation of symbols (A, C, G, T, 0 \& 1 , AZ) plus "selection" at the highest "systems" levels. The power of these systems lies in complexity.
Simple representations of them (fractals, surgery, and drugs) may not be as fruitful as detailed programming of the symbols aided by hierarchical models and highly-parallel testing. Local decisions no longer stay local.Examples are the Internet, computer viruses, genetically modified organisms (GMOs), replicating nanotechnology, bioterrorism, global warming, and biological species transport. Information (\& education) is becoming increasingly easy to spread (and hard to control). We are on the verge of begin able to collect data on almost any system at costs of terabytes-per-dollar.

The world is manipulating increasingly complex systems, many at steeper-than-exponential rates. Much of this is happening without much modeling. Some people predict a "singularity" in our lifetime or at least the creation of systems more intelligent (and/or more proliferative) than we are (possibly as little as 100 Teraflops/terabytes). We need to not only teach our students how to cope with this, but start thinking about how to teach these "intelligent" systems as if they were students. As integrated circuits reach their limit soon, the next generation of computers may be based on quantum computing and/or biologically inspired. We need to be able to teach our students about this revolution, and via the Internet teach anyone else listening.

