Intro 2: Last week's take home lessons

Elements \& Purification
Systems Biology \& Applications of Models Life Components \& Interconnections
 Continuity of Life \& Central Dogma Qualitative Models \& Evidence Functional Genomics \& Quantitative models Mutations \& Selection

x=	u	c	a	g	
$\mathbf{U \times u}$	F	5	Y	C	
uxa	L		-	-	TER
uxg			-	W	
Cxu		P	H		
cxc				R	
cxa			Q		
cxg					
axu	I	T	N	5	
axc					C-S
axa			K	\mathbf{R}	
axg	M				$\mathbf{N H +}$
gxu	V	A	D		
gxc				G	O-
gra $\mathrm{g} \mathrm{\times a}$			E		H:D/f

DNA 1: Today's story, logic $\&$ goal

Types of mutants
Mutation, drift, selection
Binomial \& exponential $\mathrm{dx} / \mathrm{dt}=\mathrm{kx}$
Association studies χ^{2} statistic
Linked and causative alleles
Haplotypes
Computing the first genome,
the second ...
New technologies
Random and systematic errors

Connecting Genotype \& Phenotype

\%DNA identity
100\% Functional measures
99.9\% Single Nucleotide Polymorphisms (SNPs)

70-98\% Speciation
30\%
$<25 \%$
Sequence homology
Distant (detectable only in 3D structures)

Types of phenotypic effects of mutations

Null: PKU
Dosage: Trisomy 21
Conditional (e.g. temperature or chemical)
Gain of function: HbS
Altered ligand specificity

Types of mutations

Single substitution: A to C, G or T , etc.
Deletion: 1 bp ... chromosomes (aneuploidy)
Duplication: as above (often at tandem repeats)
Inversion: ABCDEFG to ABedcFG
Translocation: $\mathrm{ABCD} \& \mathrm{WXYZ}$ to ABYZ \& WXCD
Insertion: ABCD to $\mathrm{AB} i v \sigma \varepsilon \rho \tau \mathrm{CD}$
Recombination: $\mathrm{ABCDEFGH} \& \mathrm{ABcDEfGH}$ to ABcDEFGH \& ABCDEfGH

Mutations \& Polymorphisms

Mutations become polymorphisms or
"common alleles" when frequency $>1 \%$ in a population (arbitrary)

All Single Nucleotide Polymorphisms (SNPs) (probably) exist in the human population:
3 billion x 4 (ACGT) at frequencies near 10^{-5}.
SNPs linked to a phenotype or causative.

Haplotypes

Representation of the DNA sequence of one chromsome (or smaller segments in cis).

Indirect inference from pooled diploid data

Direct observation from meiotic or mitotic segregation, cloned or physically separated chromsomes or segments

Linkage \& Association

Family Triad: parents \& child vs case-control
vS.

Case-control studies of association in structured or admixed populations. Pritchard \&Donnelly, 2001. To appear in Theor. Pop. Biol. Program STRAT

Null hypothesis: allele frequencies in a candidate locus do not depend on phenotype (within subpopulations)

Pharmacogenomics

Gene/Enzyme
 Drug

CYP2C9

CYP2D6

Examples of

 clinically relevant genetic polymorphisms influencing drug metabolism and effects.
Additional data

 (http://www.sciencemag.or g/feature/data/1044449.shl) inflammatoriesDihydropyrimidine dehydrogenase Fluorouracil

Potassium channels
HERG Quinidine

Tolbutamide, warfarin, phenytoin, nonsteroidal anti-

Beta blockers, antidepressants, antipsychotics, codeine, debrisoquin, dextromethorphan, encainide, flecainide, guanoxan, methoxyamphetamine, N propylajmaline, perhexiline, phenacetin, phenformin, propafenone, sparteine

Mercaptopurine, thioguanine, azathioprine

Enalapril, lisinopril, captopril

Cisapride

Terfenadine, disopyramide, meflaquine
Clarithromycin

Quantitative effect

Anticoagulant effect of warfarin

Tardive dyskinesia from antipsychotics; narcotic side effects, efficacy, and dependence; imipramine dose requirement; betablocker effect

Fluorouracil neurotoxicity

Thiopurine toxicity and efficacy; risk of second cancers

Renoprotective effects, cardiac indices, blood pressure, immunoglobulin A nephropathy

Drug-induced long QT syndrome
Drug-induced torsade de pointes Drug-induced long QT syndrome

Drug-induced arrhythmia

DNA Diversity Databases

~ 100 genomes completed (GOLD) (http//vititnegratededenomics.com/GoLD)

3 million human SNPs www.ncbi.nlm.nih.gov/SNP

mapped snp.cshl.org

23 K to 60 K SNPs in genes $\underline{\text { HGMD }}$

(http://snp.cshl.org/naturepaper.html), (http://archive.uwem.ac.uk/uwem/mg/docs/hahaha.html)

Causative SNPs can be in non-coding repeats

aggcAggtggatca
aggcGggtggatca

ALU repeat found upstream of Myeloperoxidase
"severalfold less transcriptional activity" "-463 G creates a stronger SP1 binding site \& retinoic acid response element (RARE) in the allele... overrepresented in acute promyelocytic leukemia"

Modes of inheritance

DNA, RNA (e.g. RNAi), protein (prion), \& modifications (e.g. 5mC)
"Horizontal" (generally between species) transduction, transformation, transgenic
"Vertical"
Mitosis: duplication \& division (e.g. somatic) Meiosis/fusion: diploid recombination, reduction Maternal (e.g. mitochondrial)

Today's story, logic \& goals

Types of mutants
Mutation, drift, selection
Binomial \& exponential dx/dt $=\mathrm{kx}$
Association studies χ^{2} statistic
Linked and causative alleles
Haplotypes
Computing the first genome,
the second ...
New technologies
Random and systematic errors

Where do allele frequencies come from?

Mutation/migration(M), Selection(S), Drift (D), ... Assumptions:
Constant population size N
Random mating
Non-overlapping generations
(NOT at equilibrium, not infinite alleles,sites or N)
See: Fisher 1930, Wright 1931, Hartl \& Clark 1997
(http://shop.barnesandnoble.com/textbooks/booksearch/isbnInquiry.asp?isbn=0878933069)

Directional \& Stabilizing Selection

- codominant mode of selection (coefficient s)
- fitness of heterozygote is the mean of the fitness(w) of the two homozygotes
$\mathrm{AA}=1 ; \mathrm{Aa}=1+\mathrm{s} ; \mathrm{aa}=1+2 \mathrm{~s}$
- always increase frequency of one allele at expense of the other
- overdominant mode
- heterozygote has highest fitness
$\mathrm{AA}=1, \mathrm{Aa}=1+\mathrm{s} ; \mathrm{aa}=1+\mathrm{t}$
where $0<\mathrm{t}<\mathrm{s}$
- reach equilibrium where two alleles coexist

See H\&C 1997 p. 229

Ratio of strains over environments, \mathbf{e}, times, $\mathbf{t}_{\mathbf{e}}$, selection coefficients, $\mathbf{s}_{\mathrm{e}}, \mathrm{R}=\mathrm{R}_{\mathrm{o}} \exp \left[-\Sigma \mathrm{s}_{\mathrm{e}} \mathrm{t}_{\mathrm{e}}\right]$

Where do allele frequencies come from?

Mutation/migration(M), Selection(S), Drift (D), ...
$\mathbf{M}_{\mathrm{j}}=\sum_{\mathrm{i}=0, \mathrm{j}}\left(\mathrm{T}_{\mathrm{i}} * \mathrm{~B}[\mathrm{~N}-\mathrm{i}, \mathrm{j}-\mathrm{i}, \mathbf{F}]\right) ; \quad \mathrm{M}_{\mathrm{j}}=\sum_{\mathrm{i}=\mathrm{j}, \mathrm{N}}\left(\mathrm{M}_{\mathrm{i}} * \mathrm{~B}[\mathrm{i}, \mathrm{i}-\mathrm{j}, \mathbf{R}]\right)$
$\mathbf{S}_{\mathrm{j}}=\sum_{\mathrm{i}=1, \mathrm{j}}^{\left.\sum\left(\mathrm{M}_{\mathrm{if} \mathrm{w}>1} * \mathrm{~B}[\mathrm{~N}-\mathrm{i}, \mathrm{j}-\mathrm{i}, 1-1 / \mathrm{w}]\right) ; \quad \mathrm{S}_{\mathrm{j}}=\underset{\mathrm{i}=\mathrm{j}, \mathrm{N}-1}{\sum\left(\mathrm{M}_{\mathrm{i}}\right.} * \underset{\text { if } \mathrm{w}<1}{\mathrm{~B}}[\mathrm{i}, \mathrm{i}-\mathrm{j}, 1-\mathrm{w}]\right) ; ~}$
$\mathbf{D}_{\mathrm{j}}=\sum_{\mathrm{i}=1, \mathrm{~N}-1} \mathrm{~S}_{\mathrm{i}} * \mathrm{~B}[\mathrm{~N}, \mathrm{j}, \mathrm{i} / \mathrm{N}]$
$\mathrm{w}=$ relative fitness of i mutants to N -i original
$\mathrm{T}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}}, \mathrm{S}_{\mathrm{i}}=$ frequency of i mutants in a pop. size N $\mathrm{F}=$ forward mutation(or migration) probability $; \mathrm{R}=$ reverse. $\mathrm{B}(\mathrm{N}, \mathrm{i}, \mathrm{p})=$ Binomial $=\mathrm{C}(\mathrm{N}, \mathrm{i}) \mathrm{p}^{\mathrm{i}}(1-\mathrm{p})^{\mathrm{N}-\mathrm{i}}$
(Fisher 1930, Wright 1931, Hartl \& Clark 1997)

Random Genetic Drift

very dependent upon population size

Role of Genetic Exchange

- Effect on distribution of fitness in the whole population
- Can accelerate rate of evolution at high cost (50\%)
(a) Asexual: high rate of favorable mutation

(b) Sexual: high rate of favorable mutation

from Crow \& Kimura 1970 Clark \& Hartl 1997 p. ${ }^{1982}$

Common Disease - Common Variant

Theory. How common?

ApoE allele $\varepsilon 4$: Alzheimer's dementia, \& hypercholesterolemia
$\mathbf{2 0 \%}$ in humans, $>97 \%$ in chimps
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=7772071\&dopt=Abstract)

HbS 17\% \& G6PD 40\% in a Saudi sample

CCR5 432 : resistance to HIV
9\% in caucasians

Are rare variants responsible for susceptibility to complex diseases?

"Customary in theoretical work relating to complex diseases, the allele frequencies ... are treated as parameters of the model" New here: "resulting from an evolutionary process including selection, mutation, and genetic drift ... to learn about the underlying allele frequencies"

See Pritchard Am.J.Hum.Gen 69:124-137. (2001) Programs (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=11404818\&dopt=Abstract)
(http://www.stats.ox.ac.uk/~pritch/software.html)

DNA1: Today's story, logic \& goals

Types of mutants
Mutation, drift, selection
Binomial \& exponential $\mathrm{dx} / \mathrm{dt}=\mathrm{k}$
Association studies χ^{2} statistic
Linked and causative alleles
Haplotypes
Computing the first genome,
the second ...
New technologies
Random and systematic errors

One form of HIV-1 Resistance

Association test for CCR-5 \& HIV resistance

Alleles	Obs Neg	ObsSeroPos	total	ExpecNeg	ExpecPos	
CCR-5+	1278	1368	2646	1305	1341	
Δ ccr-5	130	78	208	103	105	
total	1408	1446	2854			
					P	
dof=(r-1)(c-1)=1	ChiSq=sum[(o-e)^2/e]=	15.6	0.00008			

Samson et al. Nature 1996 382:722-5
(http://www.ncbi.nlm.nih.gov/entrez/query.fegi?cmd=Retrieve\&db=PubMed\&list_uids=8751444\&dopt=Abst

But what if we test more than one locus?

```
\(\mathrm{Y}=\) Number of Sib Pairs (As sociation)
    \(X=\) Population frequency (p)
```

 \(G R R=1.5\), \#a lle le \(\mathrm{s}=1 \mathrm{E} 6\)

The future of genetic studies of complex human diseases.
Ref
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
?cmd=Retrieve\&db=PubMed\&list_uids=88016
36\&dopt=Abstract)
GRR $=$ Genotypic relative risk

How many "new" polymorphisms?

$\mathrm{G}=$ generations of exponential population growth $=5000$ $\mathrm{N}^{\prime}=$ population size $=6 \times 10^{9}$ now; $\mathrm{N}=10^{4}$ pre-G $\mathrm{m}=$ mutation rate per bp per generation $=10^{-8}$ to 10^{-9} (ref) (http://www.nature.com/cgi-taf/DynaPage.taf?file=nature/journal/v397/n6717/abs/397344a0_fs.html\&filetype=\&content_filetype=)
$\mathrm{L}=$ diploid genome $=6 \times 10^{9} \mathrm{bp}$
$\mathrm{e}^{\mathrm{kG}}=\mathrm{N}^{\prime} / \mathrm{N}$; so $\mathrm{k}=0.0028$
Av \# new mutations $<\sum \operatorname{Le}^{k t} \mathrm{~m}=4 \times 10^{3}$ to 4×10^{4}
per genome $\quad t=1$ to 5000

Take home: "High genomic deleterious mutation rates in hominids" accumulate over 5000 generations \& confound linkage methods And common (causative) allele assumptions.

Finding \& Creating mutants

Isogenic
Proof of causality:
Find $>$ Create a copy $>$ Revert

Caution:

Effects on nearby genes
Aneuploidy (ref)

Pharmacogenomics Example

5-hydroxytryptamine transporter

Lesch KP, et al Science 1996 274:1527-31 Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Pubmed
(http://www.ncbi.nlm.nih.gov/htbinpost/Entrez/query?uid=8929413\&form= 6\&db=m\&Dopt=b)

Caution: phases of human genetics

Monogenic vs. Polygenic dichotomy

Method
Mendelian Linkage (300bp)
Common indirect/LD (106bp) Common direct (causative) All alleles (109)

Problems
need large families
recombination \& new alleles
3% coding + ?non-coding expensive ($\$ 0.20$ per SNP)
(methods)
(http://www.ncbi.nlm.nih.gov/SNP/snp_tableList.cgi?type=method)

DNA1: Today's story, logic \& goals

Types of mutants
Mutation, drift, selection
Binomial \& exponential $\mathrm{dx} / \mathrm{dt}=\mathrm{kx}$
Association studies χ^{2} statistic
Linked and causative alleles
Haplotypes
Computing the first genome, the second ...
New technologies
Random and systematic error

Examples of random \& systematic errors?

For (clone) template isolation:

For sequencing:

For assembly:

Sequence assembly

Overlap 100 kbp BAC clone (haplotype)
aaaaaggggggccccccc
aggggggccAcccctttttttag
ccccctttttttagcgc
4 sequences in 2 islands
acgacatagcgactagcta

See Ewing, Hillier, Wendl, \& Green 1998

Examples of random \& systematic errors?

For (clone) template isolation:

For sequencing:

For assembly:

Examples of systematic errors

For (clone) template isolation: restriction sites, repeats

For sequencing:
Hairpins, tandem repeats

For assembly:
repeats, errors, polymorphisms,
chimeric clones, read mistracking

Whole-genome shotgun
 Project completion \% vs coverage redundancy

Table 2. Simulation Default Parameters

35-nucleotide overlap required for sequence
joining
10 -fold genome coverage
400-nucleotide read lengths
15% variation in insert sizes
10,000-nucleotide average size for long inserts
700-nucleotide average size for short inserts
1:1 ratio of long to short inserts
100 kb spacing between STSs
300-nucleotide STS length
20% of genome comprised of SINEs with
300-nucleotide lengths
5% of genome comprised of LINEs with
1500-nucleotide lengths
4:1 ratio of SINEs to LINEs

2-Oct-2002 Boston GSAC Panel Discussion
 "The Future of Sequencing Technology: Advancing Toward the \$1,000 Genome"

Moderators:

-J. Craig Venter, Ph.D., The Center for Advancement of Genomics - Gerald Rubin, Ph.D., Howard Hughes Medical Institute

Speakers:

- George Church, Ph.D., Harvard University
-Eugene Chen, Ph.D., US Genomics
-Tony Smith, Ph.D., Solexa
-Trevor Hawkins, Ph.D., Amersham Biosciences Corporation
-Susan Hardin, Ph.D., VisiGen Biotechnologies, Inc.
- Michael P. Weiner, 454 Corporation
-Daniel H. Densham, Mobious Genomics, Ltd

Sequential dNTP addition (pyrosequencing)
 > 30 base reads; no hairpin artefacts

Fluorescent primers or ddNTPs

Anal Biochem 1997 Oct 1;252(1):78-88
Optimization of spectroscopic and electrophoretic properties of energy transfer primers.
Hung SC, Mathies RA, Glazer AN
http://www.pebio.com/ab/apply/dr/dra3b1b.html

New Genotyping

\& haplotyping technologies

 de novo sequencing $>$ scanning $>$ selected sequencing $>$ diagnostic methods
Sequencing by synthesis

- 1-base Fluorescent, isotopic or Mass-spec* primer extension (Pastinen97)
- 30-base extension Pyrosequencing (Ronaghi99)*
- 700-base extension, capillary arrays dideoxy* (Tabor95, Nickerson97, Heiner98)

SNP \& mapping methodls

- Sequencing by hybridization on arrays (Hacia98, Gentalen99)*
- Chemical \& enzymatic cleavage: (Cotton98)
- SSCP, D-HPLC (Gross 99)

Femtoliter scale reactions (10^{5} molecules)

- 20-base restriction/ligation MPSS (Gross 99)
- 30-base fluorescent in situ amplification sequencing (Mitra 1999)

Single molecule methods (not production)

- Fluorescent exonuclease (Davis91)
- Patch clamp current during ss-DNA nanopore transit (Kasianowicz96)
- Electron, STM, optical microscopy (Lagutina96, Lin99)

Use of DNA Chips for SNP ID \& Scoring ...CTtCGAGAGAGTTG ${ }_{c}^{\text {A }}$ ACAGATTCCTGGAAG...

- Used for mutation detection with HIV-1, BRCA1, mitochondria
- higher throughput and potential for automation
- ID of >2000 SNPs in 2 Mb of human DNA
- Multiplex reactions 50 -fold

T T G A A C A
T
A

G TTGCACA

TTGCACA

Use of Mass Spec for Analysis and Scoring

Haff and Smirnov, Genome Research 7 (1997): 378

```
    SNP primer
            5. CGACTGTTTGCCCGCCAGTT
3. TTAGTCGTTGCTGACAAACGGGGGGTCAACAACACCCTCCCCCAACCCTTACATTAAGTC
    lacl "C"
            + DNA Polymerase
            + ddATP, ddCTP, ddGTP, ddTTP
            Thermal cycle
                extension product
            5. CGACTGTTTGCCCGCCAGTTGdd
3. TTAGTCGTTGCTGACAAACGGGCGGTCAACAACACGGTGCGCCAACCCTTACATTAAGTC
    lacl "C"
            desalt
            add matrix
```

```
                    DE-MALDI Mass Spectrometry
```

```
                    DE-MALDI Mass Spectrometry
```

A single nucleotide primer extension assay

Mass Spectrometry for Analysis and Scoring

Haff and Smirnov, Genome Res. 7 (1997): 378

Searching for (nearly) exact matches

Hash
Suffix arrays
Suffix trees

$4^{\mathrm{N}} \sim=$ Genome length
$\mathrm{N}=$ word length (for "lookup")
e.g. Set aside space for
$4^{16} \sim=4$ billion genomic positions (each requires 4bytes of storage).

Exact Sequence Searching

\#!/usr/local/bin/perl
\$dnatext = "ggggggCgggCgggCgggg"; print " Original genome: \$dnatext \n";
\$n_mut $=\$ d n a t e x t=\sim \mathrm{s} / \mathrm{gC} / \mathrm{gg} / \mathrm{gi}$; print " Found: \$n_mut mutation(s)\n"; print " After gene-therapy: \$dnatext $\backslash n$ ";

Original genome: ggggggCgggCgggCgggg
Found: 3 mutation(s)
After gene-therapy: $\operatorname{ggg} g g g g g g g g g g g g g g g g$

DNA 1: Today's story, logic $\&$ goals

Types of mutants
Mutation, drift, selection
Binomial \& exponential $\mathrm{dx} / \mathrm{dt}=\mathrm{kx}$
Association studies χ^{2} statistic
Linked and causative alleles
Haplotypes
Computing the first genome,
the second ...
New technologies
Random and systematic errors

