## RNA1: Last week's take home lessons

- Integration with previous topics (HMM for RNA structure)
- Goals of molecular quantitation (maximal fold-changes, clustering \& classification of genes \& conditions/cell types, causality)
- Genomics-grade measures of RNA and protein and how we choose (SAGE, oligo-arrays, gene-arrays)
- Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).
- Interpretation issues (splicing, $5^{\prime} \& 3^{\prime}$ ends, editing, gene families, small RNAs, antisense, apparent absence of RNA).
- Time series data: causality, mRNA decay, time-warping


## RNA2: Today's story \& goals

- Clustering by gene and/or condition
- Distance and similarity measures
- Clustering \& classification
- Applications
- DNA \& RNA motif discovery \& search


## Gene Expression Clustering Decision Tree

Data Normalization | Distance Metric | Linkage | Clustering Method

| Data <br> - Ratios <br> - Log Ratios <br> - Absolute Measurement |
| :--- |
| How to normalize <br> - Variance normalize <br> - Mean center normalize <br> - Median center normalize |
| - Mini <br> What to normalize <br> - genes <br> - conditions |


| - Euclidean Dist. |
| :--- |
| - Manhattan Dist. |
| - Sup. Dist. |
| - Correlation Coeff. |



Hierarchical | Non-hierarchical


- K-means
- SOM

What to normalize

- genes
- conditions


## (Whole genome) RNA quantitation objectives

RNAs showing maximum change minimum change detectable/meaningful

RNA absolute levels (compare protein levels) minimum amount detectable/meaningful

Classification: drugs \& cancers

Network -- direct causality-- motifs

## Clustering vs. supervised learning

K-means clustering
SOM = Self Organizing Maps
SVD = Singular Value decomposition
PCA = Principal Component Analysis

SVM = Support Vector Machine classification and Relevance networks
Brown et al. PNAS 97:262 Butte et al PNAS 97:12182
(http://www.pnas.org/cgi/content/full/97/1/262)
(http://www.pnas.org/cgi/content/full/97/22/12182)

## Cluster analysis of mRNA expression data

## By gene (rat spinal cord development, yeast cell cycle):

Wen et al., 1998; Tavazoie et al., 1999; Eisen et al., 1998; Tamayo et al., 1999 (http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?uid=9419376\&form=6\&db=m\&Dopt=b)
(http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?uid=10391217\&form=6\&db=m\&Dopt=b)
(http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?uid=9843981\&form=6\&db=m\&Dopt=b)
(http://www.pubmedcentral.nih.gov/b.cgi?pubmedid=10077610)

## By condition or cell-type or by gene\&cell-type (human cancer):

Golub, et al. 1999; Alon, et al. 1999; Perou, et al. 1999; Weinstein, et al 1997
Cheng, ISMB 2000.
(http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m\&form=6\&uid=10521349\&db=m)
(http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?uid=10359783\&form=6\&Dopt=b)
(http://www.pubmedcentral.nih.gov/b.cgi?pubmedid=10430922)

- Rana.lbl.gov/EisenSoftware.htm


## Cluster Analysis

General Purpose: To divide samples into homogeneous groups based on a set of features.

Gene Expression Analysis: To find co-regulated genes.


## Clustering hierarchical \& non-

-Hierarchical: a series of successive fusions of data until a final number of clusters is obtained; e.g. Minimal Spanning Tree: each component of the population to be a cluster. Next, the two clusters with the minimum distance between
 them are fused to form a single cluster. Repeated until all components are grouped.

- Non-: e.g. K-mean: K clusters chosen such that the points are mutually farthest apart. Each component in the population assigned to one cluster by minimum distance. The centroid's position is recalculated and repeat until all the components are grouped. The criterion minimized, is the within-clusters sum of the variance.



## Clusters of Two-Dimensional Data



## Key Terms in Cluster Analysis

- Distance measures
- Similarity measures
- Hierarchical and non-hierarchical
- Single/complete/average linkage
- Dendrogram


## Distance Measures: Minkowski Metric

Suppose two objects $\boldsymbol{x}$ and $\boldsymbol{y}$ both have $\boldsymbol{p}$ features:

$$
\begin{aligned}
& x=\left(x_{1} x_{2} \cdots x_{p}\right) \\
& y=\left(y_{1} y_{2} \cdots y_{p}\right)
\end{aligned}
$$

The Minkowski metric is defined by

$$
d(x, y)=\sqrt[r]{\sum_{i=1}^{p}\left|x_{i}-y_{i}\right|^{r}}
$$

## Most Common Minkowski Metrics

$$
\mathbf{1}, r=2(\text { Euclidean distance })
$$

$$
d(x, y)=\sqrt[2]{\sum_{i=1}^{p}\left|x_{i}-y_{i}\right|^{2}}
$$

2, $r=1$ (Manhattan distance)

$$
d(x, y)=\sum_{i=1}^{p}\left|x_{i}-y_{i}\right|
$$

$$
\begin{gathered}
3, r=+\infty(\text { "sup" distance }) \\
d(x, y)=\max _{1 \leq i \leq p}\left|x_{i}-y_{i}\right|
\end{gathered}
$$

## An Example



1, Euclidean distance: $\sqrt[2]{4^{2}+3^{2}}=5$.
2, Manhattan distance : $4+3=7$.
3, "sup" distance : $\max \{4,3\}=4$.

## Manhattan distance is called Hamming distance when all features are binary.

Gene Expression Levels Under 17 Conditions (1-High,0-Low)

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GeneA | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| GeneB | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |

Hamming Distance : \#(01)+\#(10) $=4+1=5$.

## Similarity Measures: Correlation Coefficient

$$
s(x, y)=\frac{\sum_{i=1}^{p}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{p}\left(x_{i}-\bar{x}\right)^{2} \times \sum_{i=1}^{p}\left(y_{i}-\bar{y}\right)^{2}}}
$$

where $\bar{x}=\frac{1}{p} \sum_{i=1}^{p} x_{i}$ and $\bar{y}=\frac{1}{p} \sum_{i=1}^{p} y_{i}$.

$$
|s(x, y)| \leq 1
$$

# What kind of $x$ and $y$ give linear CC 

$$
\begin{aligned}
& \text { (1) } s(x, y)=1, \\
& \text { (2) } s(x, y)=-1, \\
& \text { (3) } s(x, y)=0
\end{aligned}
$$

## Similarity Measures: Correlation Coefficient



Time

## Hierarchical Clustering Dendrograms

See Alon et al. 1999

## Hierarchical Clustering Techniques

At the beginning, each object (gene) is a cluster. In each of the subsequent steps, two closest clusters will merge into one cluster until there is only one cluster left.

## The distance between two clusters is defined as the distance between

- Single-Link Method / Nearest Neighbor: their closest members.
- Complete-Link Method / Furthest Neighbor: their furthest members.
- Centroid: their centroids.
- Average: average of all cross-cluster pairs.


## Single-Link Method

Euclidean Distance


$$
\begin{array}{|l|lll|}
\hline & \boldsymbol{b} & \boldsymbol{c} & \boldsymbol{d} \\
\hline \boldsymbol{a} & 2 & 5 & 6 \\
\boldsymbol{b} & & 3 & 5 \\
\boldsymbol{c} & & & 4 \\
\hline
\end{array}
$$


(1)
(2)

(3)


Distance Matrix

## Complete-Link Method

Euclidean Distance


|  | $\boldsymbol{b}$ | $\boldsymbol{c}$ | $\boldsymbol{d}$ |
| :--- | :--- | :--- | :--- |
| $\boldsymbol{a}$ | 2 | 5 | 6 |
| $\boldsymbol{b}$ |  | 3 | 5 |
| $\boldsymbol{c}$ |  |  | 4 |


(1)


|  | $\boldsymbol{b}$ | $\boldsymbol{c}$ | $\boldsymbol{d}$ |
| :--- | :--- | :--- | :--- |
| $\boldsymbol{a}$ | 2 | 5 |  |
| $\boldsymbol{b}$ |  | 3 | 6 |
| $\boldsymbol{c}$ |  |  | 4 |

Distance Matrix

(3)


## Dendrograms



Complete-Link

$a b c d$


## Which clustering methods do you suggest for the following two-dimensional data?



Graphical examples of hierarchical merging
See Nadler and Smith, Pattern Recognition Engineering, 1993

## Gene Expression Clustering Decision Tree

Data Normalization | Distance Metric | Linkage | Clustering Method

| Data <br> - Ratios <br> - Log Ratios <br> - Absolute Measurement |  |
| :---: | :---: |
| $\downarrow$ |  |
| How to normalize <br> - Variance normalize <br> - Mean center normalize <br> - Median center normalize |  |
| $\downarrow$ | - Mi |
| What to normalize <br> - genes <br> - conditions |  |

```
- Euclidean Dist.
- Manhattan Dist.
- Sup. Dist.
- Correlation Coeff.
```



Hierarchical | Non-hierarchical


Minimal Spanning Tree

- K-means
- SOM

What to normalize

- genes
- conditions

Identifying prevalent experession patterns (clusters)

See Tavazoie et al. 1999 (http://arep.med.harvard.edu)

## Representation of expression data



## Identifying prevalent expression patterns

 (gene clusters)

## Cluster contents

Genes
MIPS functional category


See Eisen, et al. (1998): Fig. 1 Cluster display of data
And Weinstein, et al (1997)

## RNA2: Today's story \& goals

- Clustering by gene and/or condition
- Distance and similarity measures
- Clustering \& classification
- Applications
- DNA \& RNA motif discovery \& search


## Motif-finding algorithms

- oligonucleotide frequencies
- Gibbs sampling (e.g. AlignACE)
- MEME
- ClustalW
- MACAW


## Feasibility of a whole-genome motif search?

Genome:
( 12 Mb )

âalazGAgTCA

- Transcription control sites ( $\sim 7$ bases of information)
- 7 bases of information ( 14 bits) ~ 1 match every 16000 sites.
- 1500 such matches in a 12 Mb genome $\left(24 * 10^{6}\right.$ sites $)$.
- The distribution of numbers of sites for different motifs is Poisson with mean 1500, which can be approximated as normal with a mean of 1500 and a standard deviation of $\sim 40$ sites.
- Therefore, $\sim 100$ sites are needed to achieve a detectable signal above background.


## Sequence Search Space Reduction

- Whole-genome mRNA expression data: two-way comparisons between different conditions or mutants, clustering/grouping over many conditions/timepoints.
- Shared phenotype (functional category).
- Conservation among different species.
- Details of the sequence selection: eliminate proteincoding regions, repetitive regions, and any other sequences not likely to contain control sites.


## Sequence Search Space Reduction

- Whole-genome mRNA expression data: two-way comparisons between different conditions or mutants, clustering/grouping over many conditions/timepoints.
- Shared phenotype (functional category).
- Conservation among different species.
- Details of the sequence selection: eliminate proteincoding regions, repetitive regions, and any other sequences not likely to contain control sites.


## Motif Finding AlignACE (Aligns nucleic Acid Conserved Elements)

- Modification of Gibbs Motif Sampling (GMS), a routine for motif finding in protein sequences (Lawrence, et al. Science 262:208-214, 1993).
- Advantages of GMS/AlignACE:
- stochastic sampling
- variable number of sites per input sequence
- distributed information content per motif
- considers both strands of DNA simultaneously
- efficiently returns multiple distinct motifs


## AlignACE Example

## Input Data Set

$5^{\prime}$ - TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT
$5^{\prime}$ - ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG
5' - CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
5' - TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC
$5^{\prime}$ - ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA
$5^{\prime}$ - ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA
5' - GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

300-600 bp of upstream sequence
per gene are searched in
Saccharomyces cerevisiae.

## AlignACE Example

## The Target Motif



AAAAGAGTCA
AAATGACTCA AAGTGAGTCA AAAAGAGTCA GGATGAGTCA

# âaAzGAgTCA 

MAP score $=20.37$ (maximum)

## AlignACE Example

## Initial Seeding



TGAAAAATTC
GACATCGAAA
GCACTTCGGC
GAGTCATTAC
GTAAATTGTC
CCACAGTCCG
TGTGAAGCAC
**********


$$
\text { MAP score }=-10.0
$$

## AlignACE Example

## Sampling



|  |  | TCTCTCTCCA |
| :--- | ---: | :--- |
| TGAAAAATTC | How much better is the | TGAAAAATTC |
| GACATCGAAA | alignment with this site | GACATCGAAA |
| GCACTTCGGC | as opposed to without? | GCACTTCGGC |
| GAGTCATTAC |  | GAGTCATTAC |
| GTAAATTGTC | GTAAATTGTC |  |
| CCACAGTCCG | CCACAGTCCG |  |
| TGTGAAGCAC |  | TGTGAAGCAC |
| $* * * * * * * * * *$ |  | $* * * * * * * * * * * * *$ |

## AlignACE Example

## Continued Sampling



|  |  | ATGAAAAAAT |
| :---: | :---: | :---: |
| TGADAAITTC | How much better is the | TGADAA工TTC |
| GACATCGAAA | alignment with this site | GACATCGAAA |
| GCACTTCGGC | as opposed to without? | GCACTTCGGC |
| GAGTCATTAC |  | GAGTCATTAC |
| GTAAATTGTC |  | GTAAATTGTC |
| CCACAGTCCG |  | CCACAGTCCG |
| TGTGAAGCAC |  | TGTGAAGCAC |
| ********** |  | ********** |

## AlignACE Example

## Continued Sampling



GACATCGAAA GCACTTCGGC GAGTCATTAC GTAAATTGTC CCACAGTCCG TGTGAAGCAC

How much better is the alignment with this site as opposed to without?
**********

TGAAAAATTC
GACATCGAAA
GCACTTCGGC
GAGTCATTAC
GTAAATTGTC
CCACAGTCCG
TGTGAAGCAC
**********

## AlignACE Example

## Column Sampling



How much better is the

GACATCGAAA GCACTTCGGC GAGTCATTAC GTAAATTGTC CCACAGTCCG TGTGAAGCAC
$\boldsymbol{*} \boldsymbol{*} \boldsymbol{*} \boldsymbol{*} \boldsymbol{*} \boldsymbol{*} \boldsymbol{*} \boldsymbol{*} \boldsymbol{*} \boldsymbol{*}$

GACATCGAAAC GCACTTCGGCG GAGTCATTACA GTAAATTGTCA CCACAGTCCGC TGTGAAGCACA

## AlignACE Example

## The Best Motif

$5^{\prime}-\operatorname{TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT~}$

AAAAGAGTCA AAATGACTCA AAGTGAGTCA AAAAGAGTCA GGATGAGTCA

# aAaCGAsTCA 

MAP score $=20.37$

## AlignACE Example

## Masking (old way)



AAAAGAGTCA
AAATGACTCA AAGTGAGTCA AAAAGAGTCA GGATGAGTCA AAATGAGTCA GAATGAGTCA AAAAGAGTCA
$\uparrow$

- Take the best motif found after a prescribed number of random seedings.
- Select the strongest position of the motif.
- Mark these sites in the input sequence, and do not allow future motifs to sample those sites.
- Continue sampling.


## AlignACE Example Masking (new way)



AAAAGAGTCA
AAATGACTCA AAGTGAGTCA AAAAGAGTCA GGATGAGTCA AAATGAGTCA GAATGAGTCA AAAAGAGTCA **********

- Maintain a list of all distinct motifs found.
- Use CompareACE to compare subsequent motifs to those already found.
- Quickly reject weaker, but similar motifs.


## MAP Score

$$
\begin{aligned}
M A P & =\log \left[\prod_{j=1}^{c} \frac{\Gamma(\beta)}{\Gamma\left(F_{j}+\beta\right)} \prod_{b=1}^{4} \frac{\Gamma\left(F_{j b}+\beta_{b}\right)}{\Gamma\left(\beta_{b}\right)}\right. \\
& \times \frac{B_{a, b}(N, T-N)}{B_{a, b}(0, T)} \\
& \left.\times \prod_{b=1}^{4} G_{b}^{-F_{b}} \times\binom{ W-2}{C-2}^{-1}\right]
\end{aligned}
$$

B, $\Gamma=$ standard Beta \& Gamma functions
$\mathrm{N}=$ number of aligned sites; $\mathrm{T}=$ number of total possible sites
$\mathrm{F}_{j b}=$ number of occurrences of base $b$ at position $j(\mathrm{~F}=$ sum $)$
$\mathrm{G}_{b}=$ background genomic frequency for base $b$
$\beta_{b}=n \times \mathrm{G}_{b}$ for $n$ pseudocounts $\quad(\beta=$ sum $)$
$\mathrm{W}=$ width of motif; $\mathrm{C}=$ number of columns in motif $(\mathrm{W}>=\mathrm{C})$

## MAP Score

## MAP $N \log R$

$\mathrm{N}=$ number of aligned sites
$\mathrm{R}=$ overrepresentation of those sites.

## AlignACE Example: Final Results



## Indices used to evaluate motif significance

- Group specificity
- Functional enrichment
- Positional bias
- Palindromicity
- Known motifs (CompareACE)


## Searching for additional motif instances in the entire genome sequence

Searches over the entire genome for additional high-scoring instances of the motif are done using the ScanACE program, which uses the Berg \& von Hippel weight matrix (1987).

$$
E=\sum_{l=0}^{M} \ln \left[\frac{n_{l B}+0.5}{n_{l 0}+0.5}\right]
$$

$M=$ length of binding site motif
$B=$ base at position $l$ within the motif
$n_{I B}=$ number of occurrences of base $B$ at position $l$ in the input alignment
$n_{l O}=$ number of occurrences of the most common base at position $l$ in the input alignment


| MIPS Functional category (total ORFs) | ORFs within <br> functional category <br> $(\mathrm{k})$ | P-value <br> $-\log _{10}$ |
| :--- | :---: | :--- |
|  |  |  |
| DNA synthesis and replication (82) | 23 | 16 |
| Cell cycle control and mitosis (312) | 30 | 8 |
| Recombination and DNA repair (84) | 11 | 5 |
| Nuclear organization (720) | 40 | 4 |






CLUSTER

Organization of centrosome (14)


G1 S G2 M G1 S G2 M
$\mathrm{N}=74$

| MIPS Functional category (total ORFs) | ORFs within <br> functional category <br> $(\mathrm{k})$ | P-value <br> $-\log _{10}$ |
| :--- | :---: | :--- |
|  | 6 | 6 |
| Organization of centrosome (28) | 3 | 5 |
| Nuclear biogenesis (5) | 7 | $4^{*}$ |
| Organization of cytoskeleton (93) |  |  |








| Ribosome (1) | $\mathrm{N}=164$ |  |  |
| :---: | :---: | :---: | :---: |
|  | MIPS Functional category (total ORFs) | ORFs within functional category <br> (k) | P -value <br> $-\log _{10}$ |
|  |  | 64 | 54 |
| G1 S G2 M G1 S G2 M | Organization of cytoplasm (555) | 79 | 39 |
|  | Organization of chromosome structure (41) | 7 | 4 |







## Metrics of motif significance

Separate, Tag, Quantitate RNAs or interactions

## Periodicity $\longleftarrow$ Cluste

Interaction Motifs


Interaction
partners

## Functional category enrichment odds

N genes total; s1 = \# genes in a cluster; s2= \# genes in a particular functional category ("success"); $p=s 2 / \mathrm{N} ; \mathrm{N}=\mathrm{s} 1+\mathrm{s} 2-\mathrm{x}$ Which odds of exactly $x$ in that category in s1 trials?
Binomial: sampling with replacement.
(Wrong!)

$$
B=\binom{s 1}{x} p^{x}(1-p)^{(s 1-x)}
$$

or Hypergeometric: sampling without replacement: Odds of getting exactly $x=$ intersection of sets $s 1 \& s 2$ :

$$
H=\frac{\binom{s 1}{x}\binom{N-s 1}{s 2-x}}{\binom{N}{s 2} \quad \underline{\operatorname{Ref}}}(\text { (http:/library.thinkquest.org/10030/statcon.htm) } \quad 57
$$

## Functional category enrichment


$\mathrm{N}=$ Total \# of genes (or ORFs) in the genome
s1 = \# genes in the cluster
s2 = \# genes found in a functional category
$\mathrm{x}=$ \# ORFs in the intersection of these groups
(hypergeometric probability distribution)

$$
S_{\text {function }}=\sum_{i=x}^{\min (s 1, s 2)} \frac{\binom{s 1}{i}\binom{N-s 1}{s 2-i}}{\binom{N}{s 2}}
$$

## Group Specificity Score ( $\mathrm{S}_{\text {group }}$ ) <br> 

$\mathrm{N}=$ Total \# of genes (ORFs) in the genome
s1 = \# genes whose upstream sequences were used to align the motif (cluster)
s2 $=\#$ genes in the target list ( $\sim 100$ genes in the genome with the best sites for the motif near their translational starts)
$x=\#$ genes in the intersection of these groups

$$
S_{\text {group }}=\sum_{i=x}^{\min (s 1, s 2)} \frac{\binom{s 1}{i}\binom{N-s 1}{s 2-i}}{\binom{N}{s 2}}
$$

## Positional Bias

$$
P=\sum_{i=m}^{t}\binom{t}{i}\left(\frac{w}{s}\right)^{i}\left(1-\frac{w}{s}\right)^{t-i}
$$

(Binomial)
$t=$ number of sites within 600 bp of translational start from among the best 200 being considered $m=$ number of sites in the most enriched $50-\mathrm{bp}$ window
$s=600 \mathrm{bp}$
$w=50 \mathrm{bp}$

Start

## Comparisons of motifs

- The CompareACE program finds best alignment between two motifs and calculates the correlation between the two position-specific scoring matrices
- Similar motifs: CompareACE score $>0.7$


## Clustering motifs by similarity

Cluster motifs using a similarity matrix consisting of all pairwise CompareACE scores


|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ | 1.0 | 0.9 | 0.1 | 0.0 |
| $\mathbf{B}$ |  | 1.0 | 0.2 | 0.1 |
| $\mathbf{C}$ |  |  | 1.0 | 0.8 |
| $\mathbf{D}$ |  |  |  | 1.0 |


cluster 1: A, B
cluster 2: C, D

## Palindromicity

- CompareACE score of a motif versus its reverse complement
- Palindromes: CompareACE $>0.7$
- Selected palindromicity values:


## PurR



## Crp



## ArgR



## CpxR


0.39

## S. cerevisiae AlignACE test set

- Functional categories ( 248 groups $\rightarrow 3313$ motifs)
- MIPS (135 goups)
- YPD (17 groups)
- names (96 groups)
- Negative controls ( 250 groups $\rightarrow 3692$ motifs)
- 50 each of randomly selected sets of $20,40,60$, 80 , or 100 genes
- Positive controls (29 groups)
- Cold Spring Harbor website -- SCPD
- 29 sets of genes controlled by a TF with 5 or more known binding sites


## Most specific motifs

(ranked by $\mathrm{S}_{\text {group }}$ )

| Cluster | MAP | Spec | PosBias | Logo | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 231.8 | $3.0 \mathrm{e}-46$ | 1.5e-07 | AAsCCa $\triangle$ CAI | Rap1 |
| 2 | 128.2 | 3.1e-32 | $3.0 \mathrm{e}-10$ | GGTECCAAA | Rpn4 |
| 3 | 31.1 | $5.4 \mathrm{e}-23$ | 1.6e-3 | SAATGAETCA | Gcn4 |
| 4 | 22.9 | $6.9 \mathrm{e}-20$ | $2.2 \mathrm{e}-3$ | CIAGAA =IE | HSE |
| 5 | 29.8 | 1.1e-15 | 9.0e-4 | ¢Sr T_C¢CC, ${ }_{\text {e }}$ | Mig1/STRE |
| 6 | 17.4 | $1.3 \mathrm{e}-14$ | 1.9e-4 | SACCAAT $=A$ | Hap2,3,4 |
| 7 | 30.8 | 3.1e-14 | 9.3e-4 | CACGTGA EIE | Cbf1 |
| 8 | 39.3 | $1.3 \mathrm{e}-13$ | $3.5 \mathrm{e}-08$ | I-ACCPGTE= | MCB |
| 9 | 25.2 | $2.0 \mathrm{e}-13$ | 3.5e-08 | ITICC _GGAAI | Lys14 |
| 10 | 19.3 | 2.1e-12 | $2.6 \mathrm{e}-3$ | $\triangle C C G E T$ ¢GG | Leu3 |
| 11 | 102.2 | $2.3 \mathrm{e}-12$ | $2.0 \mathrm{e}-43$ | IGAAAAAITI |  |
| 12 | 17.1 | 2.7e-12 | 3.7e-3 | TennceccGa |  |
| 13 | 12.3 | $3.3 \mathrm{e}-12$ | $2.0 \mathrm{e}-4$ |  |  |
| 14 | 20.6 | $1.0 \mathrm{e}-11$ | $1.1 \mathrm{e}-2$ | E SCCACASII | Met31,32 |
| 15 | 29.3 | $1.2 \mathrm{e}-11$ | $2.6 \mathrm{e}-4$ |  | ECB |
| 16 | 24.6 | $1.4 \mathrm{e}-11$ | 2.8e-4 | $\Rightarrow G^{\prime}=G_{E}$ | Acr1 |
| 17 | 20.2 | $2.0 \mathrm{e}-11$ | 3.2e-4 | CEGAG HE=GG |  |
| 18 | 28.0 | $1.1 \mathrm{e}-10$ | $1.7 \mathrm{e}-4$ | a GAA - GAA | CCA |

## Most positionally biased motifs

| Cluster | MAP | Spec | PosBias | Logo | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21.0 | 0.5 | 4.1e-175 | AAAE-AAAAA |  |
| 2 | 73.9 | 0.7 | 5.8e-92 | TET TITIT | AT repeats |
| 3 | 28.3 | 0.08 | 1.4e-48 | L TxTIx TLI |  |
| 4 | 22.3 | 3.0e-4 | $2.0 \mathrm{e}-43$ | İAAAAATTI | SP11 |
| 5 | 23.8 | 3.3e-3 | $1.5 \mathrm{e}-35$ | \%_CGGGTAAs | Reb1 |
| 6 | 29.5 | $1.0 \mathrm{e}-3$ | 2.7e-33 | GsGATGAG_I | PAC |
| 7 | 14.3 | 2.9e-3 | $1.5 \mathrm{e}-31$ | ATCAE $=A_{\text {c }}$ | Abf1 |
| 8 | 26.7 | 0.95 | 1.2e-19 | AAAA_A GAAAA |  |
| 9 | 32.6 | 2.2e-16 | $1.3 \mathrm{e}-19$ | GT TGGGT | GT repeats |
| 10 | 125.4 | 9.5e-29 | 1.1e-14 | ILTIGCCACC | Rpn4 |
| 11 | 12.5 | 8.1e-3 | $6.5 \mathrm{e}-11$ | $\triangle A A=T \pm A$ AAA |  |
| 12 | 12.9 | 0.07 | 1.4e-10 | $I T_{x}-T T_{\text {I }} T_{ \pm}$ |  |
| 13 | 13.2 | 7.5e-06 | $7.0 \mathrm{e}-10$ |  |  |
| 14 | 10.5 | 9.7e-05 | 5.0e-09 | I-ACGCGT $=$ ¢ | MCB |
| 15 | 13.0 | 0.11 | 5.4e-09 | $A \triangle A A Q G A A G$ |  |

## Negative Controls

- 250 AlignACE runs on 50 groups each of 20, 40, 60, 80 , and 100 orfs, resulting in 3692 motifs.
- Allows calibration of an expected false positive rate for a set of hypotheses resulting from any chosen cutoffs.


## Example:

## MAP $>10.0 \xrightarrow{\text { Functional Categories }} 82$ motifs ( 24 known) <br> Spec. $<1 \mathrm{e}-5 \xrightarrow{\text { Random Runs }} 41$ motifs

Computational identification of cis-regulatory elements associated with groups $\oplus £$ functionally related genes in S. cerevisiae Hughes, et al JMB, 1999.

## Positive Controls

- 29 transcription factors listed on the CSH web site have five or more known binding sites. AlignACE was run on the upstream regions of the corresponding genes.
- An appropriate motif was found in 21/29 cases.
- 5/8 false negatives were found in appropriate functional category AlignACE runs.
- False negative rate $=\sim 10-30 \%$


## Establishing regulatory connections

- Generalizing \& reducing assumptions:
- Motif Interactions: (Pilpel et al 2001 Nat Gen ) (http://arep.med.harvard.edu/pdf/Pilpel01.pdf)
- Which protein(s): in vivo crosslinking
- Interdependence of column in weight matrices: array binding (Bulyk et al 2001PNAS



## RNA2: Today's story \& goals

- Clustering by gene and/or condition
- Distance and similarity measures
- Clustering \& classification
- Applications
- DNA \& RNA motif discovery \& search

