Net1: Last week's take home lessons

- Macroscopic continuous concentration rates (rbc)
- Cooperativity \& Hill coefficients
- Bistability (oocyte cell division)
- Mesoscopic discrete molecular numbers
- Approximate \& exact stochastic (low variance feedback)
- Chromosome Copy Number Control
- Flux balance optimization
- Universal stoichiometric matrix
- Genomic sequence comparisons (E.coli \& H.pylori)

Net2: Today's story \& goals

- Biology to aid algorithms to aid biology
- Molecular \& nano-computing
- Self-assembly
- Cellular network computing
- Genetic algorithms
- Neural nets

Algorithm Running Time

Given a size n problem, an algorithm runs $\boldsymbol{O}(f(n))$ time:
$\boldsymbol{O}(f(n))$: upper bound. (Ω :lower θ : equal)
Polynomial $\left\{\begin{array}{l|l|l|l|l|}\hline \text { Time } & \boldsymbol{n}=1 & \boldsymbol{n}=10 & \boldsymbol{n}=100 & \boldsymbol{n}=1000 \\ \hline \boldsymbol{n} & 1 & 10 & 10^{2} & 10^{3} \\ \hline \boldsymbol{n}^{2} & 1 & 10^{2} & 10^{4} & 10^{6} \\ \hline \boldsymbol{n}^{10} & 1 & 10^{10} & 10^{20} & 10^{30} \\ \hline 2^{\boldsymbol{n}} & 2 & >10^{3} & >10^{30} & >10^{300} \\ \hline \boldsymbol{n}! & 1 & >10^{6} & >10^{150} & >10^{2500} \\ \hline\end{array}\right.$

Algorithm Complexity

- $\mathrm{P}=$ solutions in polynomial deterministic time.
- e.g. dynamic programming
- $\mathrm{NP}=($ non-deterministic polynomial time) solutions checkable in deterministic polynomial time.
- e.g. RSA code breaking by factoring
- NP-complete = most complex subset of NP
- e.g. traveling all vertices with mileage $<x$
- NP-hard = optimization versions of above
- e.g. Minimum mileage for traveling all vertices
- Undecidable = no way even with unlimited time \& space
- e.g. program halting problem

How to deal with NP-complete and NP-hard Problems

- Redefine the problem into Class P:
- RNA structure Tertiary => Secondary
- Alignment with arbitrary function=>constant
- Worst-case exponential time:
- Devise exhaustive search algorithms.
- Exhaustive searching + Pruning.
- Polynomial-time close-to-optimal solution:
- Exhaustive searching + Heuristics (Chess)
- Polynomial time approximation algorithms

What can biology do for difficult computation problems

- DNA computing
- A molecule is a small processor,
- Parallel computing for exhaustive searching.
- Genetic algorithms
- Heuristics for finding optimal solution, adaptation
- Neural networks
- Heuristics for finding optimal solution, learning,...

Net2: Today's story \& goals

- Biology to aid algorithms to aid biology
- Molecular nano-computing
- Self-assembly
- Cellular network computing
- Genetic algorithms
- Neural nets

Electronic, optical \& molecular nano-computing

Steps: assembly $>$ Input $>$ memory $>$ processor $/$ math $>$ output

Potential biological sources: harvest design evolve

A 30-fold improvement $=8$ years of Moore's law

Optical nano-computing \& self-assembly

See Ebbesen et al., Extraordinary optical transmission through subwavelength hole arrays. Nature 391, 667-669 (1998).

Vlasov et al. (2001) On-chip natural assembly of silicon photonic bandgap crystals.

Electronic-nanocomputing

See Bachtold et al. \& Huang et al. (2001) Science 294:
1317, 1313.
(http://lib.harvard.edu:2058/cgi/content/full/294/5545/1317)

Molecular nano-computing

- R. P. Feynman (1959) American Physical Society, "There's Plenty of Room at the Bottom" (Pub) (http://www.zyvex.com/nanotech/feynman.html)
- K. E. Drexler (1992) Nanosystems: molecular machinery, manufacturing, and computation. (Pub) (http://www.zyvex.com/nanotech/nanosystems.html)
- L. M. Adleman, Science 266, 1021 (1994) Molecular computation of solutions to combinatorial problems.

DNA computing: Is there a Hamiltonian path through all nodes?

An $\boldsymbol{s t}$-Hamiltonian path is $(\mathrm{s}, 3,5,2,4, \mathrm{t})$.
L. M. Adleman, Science 266, 1021 (1994) Molecular computation of ${ }_{12}$ solutions to combinatorial problems.

DNA Computing for st-Hamiltonian Path

- Encode graph (nodes and edges) into ssDNA sequences.
- Create all possible paths (overlapping sequences) using DNA hybridization.
- Determine whether the solution
(or the sequence) exists.

Encode Graph into DNA Sequences

Nodes $=>$ Sequences:
Edges $=>$ Sequences:
...
3: 5^{\prime} GTCACACTTCGGACTGACCT $3^{\prime} \longrightarrow(3,4): 5^{\prime}$ GGACTGACCTTGTGCTATGG 3^{\prime} 4: 5^{\prime} TGTGCTATGGGAACTCAGCG $3^{\prime} \longrightarrow(4,5): 5^{\prime}$ GAACTCAGCGCACGTAAGAC 3^{\prime} 5:5'CACGTAAGACGGAGGAAAAA $3^{\prime} \longrightarrow \ldots$

Reverse Sequences:
3:5'AGGTCAGTCCGAAGTGTGAC 3'
4: 5'CGCTGAGTTCCCATAGCACA 3^{\prime}
5:5'tтtтTCCTCCGTCTTACGTG 3'

Edges + Nodes $=>$ Path $(3,4,5)$:

GGACTGACCTTGTGCTATGGGAACTCAGCGCACGTAAGAC...
\square
CAGTGTGAAGCCTGACTGGAACACGATACCCTTGAGTCGCGTGCATTCTG...

Create All st-Paths

Start of a path:
(1,2): 5' (Node1) +(PrefixOfNode2) 3'

(1,3): 5' (Node1) +(PrefixOfNode3) 3'
End of a path:
All st-paths:
$(4,6): 5^{\prime}($ SuffixOfNode 4$)+\left(\right.$ Node6) 3^{\prime}
$(1,2,4,6)$
$(1,3,5,6)$
$(5,6): 5^{\prime}\left(\right.$ SuffixOfNode5) $+\left(\right.$ Node6) 3^{\prime}
$(1,3,5,2,4,6)$
$(1,3,4,5,4,6)$
$(1,2,4,5,2,4,5,2,4,5,6)$

Path (1,2,4,6):

Edge (1,2): $5^{\prime} \rightarrow 3^{\prime}$		Edge (2,4): $5^{\prime} \rightarrow 3^{\prime}$	Edge (4,6): $5^{\prime} \rightarrow 3$ '
Node 1 Reverse ($\mathbf{3}^{\prime} \leqslant 5{ }^{\prime}$)	Node 2 Reverse ($3^{\prime}<5^{\prime}$)	Node 4 Reverse ($3^{\prime} \leftarrow 5{ }^{\prime}$)	Node 6 Reverse ($3^{\prime} \leftarrow 5^{\prime}$)

DNA Computing Process

-Encode graph into DNA sequences.
\cdot Create all paths from \boldsymbol{s} to \boldsymbol{t}. $\cdot \mathrm{PCR}$
-Extract paths that visit every node. •Serial hybridization

- Extract all paths of \boldsymbol{n} nodes. \cdot Electrophoretic size
-Report Yes if any path remains

-Oligonucleotide synthesis
-Graduated PCR electrophoretic fluorescence

Molecular computation: RNA solutions to chess problems.

See Faulhammer, et al. 2000 PNAS 97, 1385-1389. (Pub)
(http://www.pnas.org/cgi/content/ful/97/4/1385)
split \& pool oligonuc. synthesis
split \& pool RNase H elimination

$$
((h \wedge-f) \vee a) \wedge((-g \wedge-i) \vee-b) \wedge((-d \wedge-h) \vee-c) \wedge(((-c \wedge-i) \vee-d) \wedge((-a \wedge-g) \vee-f) .
$$

Problems of DNA Computing

- Polynomial time but exponential volumes
- A 100 node graph needs $>10^{30}$ molecules.
- Far slower than a PC.
- Experimental errors:
- mismatch hybridization
- incomplete cleavage
- Non-reusable.

Promises of DNA Computing

- High parallelism
- Operation costs near thermodynamic limit
-2 vs $34 \times 10^{19} \mathrm{ops} / \mathrm{J}$ (10^{9} for conventional computers)
- Solving one NP-complete problem implies solving many.
- Possible improvement
- Faster readout techniques (eg. DNA chips).
- Natural selection.

A sticker-based model for DNA computation.

Roweis et al. J Comput Biol 1998; 5:615-29 (Pub, JCB) (http://www.cs.sandia.gov/jcb/v5/n4/v5n4art1.html) Unlike previous models, the stickers model has a random access memory that requires no strand extension and uses no enzymes.

In theory, ...reusable. [We] propose a specific machine architecture for implementing the stickers model as a microprocessor-controlled parallel robotic workstation...

Concerns about molecular computation (Smith, 1996; Hartmanis, 1995; Linial et al., 1995) are addressed:

1) General-purpose algorithms can be implemented by DNA-based computers
2) Only modest volumes of DNA suffice.
3) [Altering] covalent bonds is not intrinsic to DNA-based computation.
4) Means to reduce errors in the separation operation are addressed in Karp et al., 1995; Roweis and Winfree, 1999).

3SAT

Given n boolean ($0 / 1$) variables $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $m 3$-variable clauses $c=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$, is $c_{1} \wedge c_{2} \wedge \ldots \wedge c_{m}$ satisfiable for some \boldsymbol{x} ?

$$
\begin{aligned}
& \boldsymbol{c}_{1}=\boldsymbol{x}_{1} \vee \overline{\boldsymbol{x}}_{3} \vee \overline{\boldsymbol{x}}_{7} \\
& \boldsymbol{c}_{2}=\overline{\boldsymbol{x}}_{1} \vee \boldsymbol{x}_{2} \vee \boldsymbol{x}_{4} \\
& \ldots \\
& \boldsymbol{c}_{\boldsymbol{m}}=\boldsymbol{x}_{1} \vee \boldsymbol{x}_{\boldsymbol{m}-1} \vee \overline{\boldsymbol{x}}_{\boldsymbol{m}}
\end{aligned}
$$

DNA Computing for 3SAT

ALGORITHMS:

1. Encode Graph \boldsymbol{G} into DNA sequences.
2. Create all paths from $\boldsymbol{v}_{\boldsymbol{0}}$ to $\boldsymbol{v}_{\boldsymbol{n}}$.
3. For every clause
4. Select sequences that satisfy this clause.
5. Report Yes or No.

DNA computing on surfaces

Liu Q, et al. Nature 2000;403:175-9 A set of DNA molecules encoding all candidate solutions to the computational problem of interest is synthesized on a surface. Cycles of hybridization operations and exonuclease digestion identify \& eliminate non-solutions.

The solution is identified by PCR and hybridization to an addressed array. The advantages are scalability and potential to be automated (solid-phase formats simplify repetitive chemical processes, as in DNA \& protein synthesis). Here we solve a NP-complete problem (SAT) (Pub)
(http://www.nature.com/cgitaf/DynaPage.taf?file=/nature/journal/v403/n6766/full/403175a0_fs.html\&filetype=\&content_filetype=\&_User Reference=D82349ED46B4ACCCE594B859D7113A214DE4)

Braich RS, Chelyapov N, Johnson C, Rothemund PW, Adleman L. Solution of a 20 -variable 3-SAT problem on a DNA computer. Science. 2002 Apr 19;296(5567):499-502.

Net2: Today's story \& goals

- Biology to aid algorithms to aid biology
- Molecular nano-computing
- Self-assembly
- Cellular network computing
- Genetic algorithms
- Neural nets

Logical computation using algorithmic selfassembly of DNA triple-crossover molecules.

Aperiodic mosaics form by the self-assembly of 'Wang' tiles, emulating the operation of a Turing machine ... a logical equivalence between DNA sticky ends and Wang tile edges. Algorithmic aperiodic self-assembly requires greater fidelity than periodic, because correct tiles must compete with partially correct tiles. Triple-crossover molecules that can be used to execute four steps of a logical (cumulative XOR) operation on a string of binary bits. (a XOR b is TRUE only if a and b have different values) Mao et al. Nature 2000 Sep 28;407(6803):493-6(Pub) (http://www.nature.com/cgitaf/DynaPage.taf?file=/nature/journal/v407/n6803/full/407493a0_fs.html\&_UserReference=D82349E D46B4F23D3460377A1B753A238D2E)

Nanoarray microscopy readout (vs gel assays)

See Winfree et al, 1998; Nature 394, 539-544 (Pub) (http://seemanlab4.chem.nyu.edu/two.d.html)

Micro-ElectroMechanical Systems (MEMS)

"Ford Taurus models feature Analog Devices' advanced airbag sensors"
"A unit gravity signal will move the beam 1% of the beam gap and result in a 100 fF change in capacitance. Minimal detectable deflections are 0.2 Angstroms; less than an atomic diameter. " (tech specs)
(http://www.analog.com/publications/whitepapers/products/Sensordetroit/Sensordetroit.html)

Nano-ElectroMechanical Systems (NEMS)

See Soong et al. Science 2000; 290: 1555-1558.Powering an Inorganic Nanodevice with a Biomolecular Motor. (Pub)
(http://www.sciencemag.org/cgi/content/full/290/5496/1555)

Nanosensors

See Meller, et al. (2000) "Rapid nanopore discrimination between single polynucleotide molecules." PNAS 1079-84. Akeson et al. Microsecond time-scale discrimination among polyC, polyA, and polyU as homopolymers or as segments within single RNA molecules. Biophys J 1999;77:3227-33
(http://www.pnas.org/cgi/content/full/97/3/1079)
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=10585944\&dopt=Abstract)

$\operatorname{poly}(\mathrm{dA})_{100} \& \operatorname{poly}(\mathrm{dC})_{100}$ at $15^{\circ} \mathrm{C}$

See Vercoutere M., et al, Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol. 2001 Mar; 19(3):248-52.

Net2: Today's story \& goals

- Biology to aid algorithms to aid biology
- Molecular nano-computing
- Self-assembly
- Cellular network computing
- Genetic algorithms
- Neural nets

A synthetic oscillatory network of transcriptional regulators

See Elowitz \&Leibler, (Pub), Nature 2000;403:335-8

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Text\&DB=PubMed)
(http://www.nature.com/cgitaf/DynaPage.taf?file=/nature/journal/v403/n6767/full/403335a0_fs.html\&_UserR eference=D82349EC46B4ABC190D3999B98E33A23D0CE)

Synthetic oscillator network

Synthetic oscillator network

Controls with IPTG

Variable amplitude \& period in sib cells

Internal state sensors

See Honda et al (2001) PNAS 98:2437-42 Spatiotemporal dynamics of cGMP revealed by a genetically encoded, fluorescent indicator. (http://www.ncbi.nlm.nih.gov/entrez/utils/fref.fcgi?http://www.pnas.org/cgi/pmidlookup?view=full\&pmid=11226257)
and
Ting et al. protein kinase/phosphatase activities
(http://www.tsienlab.ucsd.edu/HTML/People/Alice/Alice Ting.htm)

Net2: Today's story \& goals

- Biology to aid algorithms to aid biology
- Molecular nano-computing
- Self-assembly
- Cellular network computing
- Genetic algorithms
- Neural nets

Genetic Algorithms (GA)

1. Initialize a random population of individuals (strings)
2. Select a sub-population for offspring production

3 , Generate new individuals through genetic operations (mutation, variation, and crossover)
4. Evaluate individuals with a fitness function.
5. If solutions are not found, Go to step 2
6. Report solution.

Genetic Operations

Mutation
...ACCGGTTACGTTGGA...

Crossover
...ACCGGTTT CGTTGGA...
...CGTACGCCTITACCC...
...ACCGGTTTGTTTACCC...
...CGTACGCCTCGTTGGA...

SAGA: Sequence Alignment by Genetic Algorithm [DP: $\mathrm{O}\left(2^{\mathrm{N}} \mathrm{L}^{\mathrm{N}}\right) \mathrm{N}$ sequences length L]

Improve fitness of a population of alignments by an objective function which measures multiple alignment quality, [using] automatic scheduling to control 22 different operators for combining alignments or mutating them between generations.

SAGA continues

The 16 block shuffling operators, the two types of crossover, the block searching, the gap insertion and the local rearrangement operator, make a total of 22 . Each operator has a probability of being used that is a function of the efficiency it has recently (e.g. 10 last generations) displayed at improving alignments.

Comparison of ClustalW \& SAGA

Test case	Nseq	CLUSTAL W versus structure $(\%)$	CPU-time	SAGA versus	CPU-time

Net2: Today's story \& goals

- Biology to aid algorithms to aid biology
- Molecular nano-computing
- Self-assembly
- Cellular network computing
- Genetic algorithms
- Neural nets

Artificial Neural Networks

A neural network:

Neural Networks

McCulloch and Pitts (1943) Neurology inspired "\&/OR"operations

Werbos 1974 back-propagation learning method
Hopfield 1984, PNAS 81:3088-92 Neurons with graded response have collective computational properties like those of two-state neurons. (Pub)
(http://www.ncbi.nIm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=6587342\&dopt=Abstract)

An ORF Classification Example

Optimal Linear Separation (minimum errors)

Measuring Exons

Exon Features \{
Donor Site Score, Acceptor Site Score, In-frame 2-Codon Score, Exon Length (log), Intron Scores, \}

Linear Discriminate Function and Single Layer Neural Network

Exon: $e=\left(x_{1} x_{2} \ldots x_{d}\right)$
A linear separator :
$y=\sum_{i=1}^{d}\left(w_{i} x_{i}\right)+w_{0}$
$\boldsymbol{y}>0$: Exon $\boldsymbol{y}<0:$ Non-Exon
A 2-feature linear separation

Output

Inputs

An activation function :

$$
y=f\left(\sum_{i=0}^{d} w_{i} x_{i}\right)
$$

Activation Function

$f(a)=a$

Output

Inputs

$$
y=f\left(\sum_{i=0}^{d} w_{i} x_{i}\right)
$$

$$
\begin{cases}\boldsymbol{f}(\boldsymbol{a})=0 & \boldsymbol{a}<0 \\ \boldsymbol{f}(\boldsymbol{a})=1 & \boldsymbol{a} \geq 0\end{cases}
$$

Step Function

$$
f(a)=\frac{1}{1+e^{a}}
$$

Sigmoid Function

Determining Edge Weights from Training Sets

Given a set of \boldsymbol{n} known exons/nonexons :
$\left(\bar{e}_{1}, t_{1}\right),\left(\bar{e}_{2}, t_{2}\right), \ldots,\left(\bar{e}_{n}, t_{n}\right)$
Step1 Initialize \boldsymbol{w}
Step2 Sum of squares error function :

$$
\boldsymbol{E}(\overline{\boldsymbol{w}})=\frac{1}{2} \sum_{k=1}^{n}\left\{\boldsymbol{f}\left(\overline{\boldsymbol{e}}_{\boldsymbol{k}}, \overline{\boldsymbol{w}}\right)-\boldsymbol{t}_{\boldsymbol{k}}\right\}^{2}
$$

Step3 Updating $\boldsymbol{w}_{\boldsymbol{j}}$

$$
\boldsymbol{w}_{j}^{\tau+1}=\boldsymbol{w}_{j}^{\tau}-\left.\lambda \frac{\partial \boldsymbol{E}(\boldsymbol{w})}{\partial \boldsymbol{w}_{\boldsymbol{j}}}\right|_{\bar{w}^{\tau}}
$$

Non-linear Discrimination

Exclusive-OR Problem

A 2-feature non-linear separation

The Multi-Layer Perceptron

Training: Error Back Propagation ${ }_{51}$

GRAIL

Located 93% of all exons regardless of size with a false positive rate of 12%. Among true positives, 62% match actual exons exactly (to the base), 93% match at least one edge exactly.

See Xu et al, Genet Eng 1994;16:241-53
Recognizing exons in genomic sequence using GRAIL II.
(Pub)
(http://www.ncbi.nIm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=7765200\&dopt=Abstract)

Net2: Today's story \& goals

- Biology to aid algorithms to aid biology
- Molecular nano-computing
- Self-assembly
- Cellular network computing
- Genetic algorithms
- Neural nets

