Harvard-MIT Division of Health Sciences and Technology HST.535: Principles and Practice of Tissue Engineering Instructor: Lisa E. Freed

HST 535 Principles and Practice of Tissue Engineering

Effects of Culture Conditions

Lisa E. Freed, M.D., Ph.D.

Harvard-MIT Division of Health Sciences and Technology

October 6, 2004

Tissue engineering approach

Figure by MIT OCW. After Vacanti and Langer.

adapted from Vacanti & Langer, Lancet 354:32, 1999

Culture conditions determine cell fate

Loss of specialized function senescence (aging), death

Culture conditions key for tissue engineering

- 1. *Defined Culture Media*, to induce differentiation of progenitor (stem) cells.
- 2. *Biomaterial Scaffolds,* to provide a 3-D cell culture environment, and to influence the mechanical properties of engineered tissue.
- 3. *Bioreactor Vessels,* to promote spatially uniform cell seeding, and to provide mass transport and biophysical stimulation during tissue culture.

Defined media → cell differentiation

Figure by MIT OCW. After Bruder & Caplan, Principles of Tissue Engineering, 2000.

Medium A,B, or C \rightarrow selective differentiation

donor #1

Grid of six photos removed for copyright reasons.

donor #2

Lipid Type II collagen Alkaline phosphatase

Pittenger et al., Science 284: 143, 1999

A scaffold → 3-dimensional culture (non woven mesh of polyglycolic acid, PGA)

Two photos removed for copyright reasons.

Fiber diameter (13 µm) is similar to that of a cell; Porosity is high (97 %); material is biocompatible.

20 µm

Source: Freed, L., et al. (Nat)Bio/Technol 12: 689, 1994.

3-D scaffold promoted differentiation

(chondrocyte cultures)

Source: Freed, L., et al. (Nat)Bio/Technol 12: 689, 1994.

3-D scaffolds for engineering cartilage (representative)

Three photos removed for copyright reasons.

Appropriate biomechanics with meshes (chondrocytes on different scaffolds, 1 month)

Scaffold:

Four photos removed for copyright reasons.

Pei et al., FASEB J. 16: 1691, 2002

3-D cell seeding requires dynamic mixing

(chondrocytes on sponge or mesh)

Two photos removed for copyright reasons.

Porous sponge:

Fibrous mesh:

Photos by L. Freed. See Vunjak-Novakovic, G. et al. Biotechnol Prog. 14 no. 2 (1998): 193-202

3-D scaffolds for engineering heart (representative)

Three photos removed for copyright reasons.

3-D structure	non-woven mesh	sponge	knitted fabric
Structural stability	low	low	high
Porosity, pore inter- connectivity	high	high	non-uniform

Appropriate biomechanics with knitted fabric

(heart cells/gel on knitted fabric, 1 week)

Boublik et al., Tissue Eng. 11: 1122, 2005.

3D cell seeding requires hydrogel & perfusion

(C2C12 myocytes/gel on collagen sponge, 5 h)

petri dish perfusion

Тор

Center

Image removed for copyright reasons.

Bottom

__ 100 μm

Radisic et al., Biotech Bioeng 82: 403, 2003

Culture systems for engineering cartilage

	static	spinner	rotating
	petri dish	flask	bioreactor
Mechanism	none	magnetic	rotational flow,
of mixing		stirring	construct settling
Flow pattern	none	turbulent	laminar
Gas exchange	surface	surface	internal
	aeration	aeration	membrane
Mass transfer	diffusion	convection	convection

Rotating bioreactor → dynamic, laminar flow pattern

side view:

end view:

suspended construct:

Images removed for copyright reasons.

Flow-visualization study and video by P. Neitzel Freed & Vunjak-Novakovic, *Biotech Bioeng* 36: 306, 1995

Chondrogenesis in rotating bioreactor

culture day 12:

culture day 40:

Glycosaminoglycans (safranin-O stain)

2 mm

Image removed for copyright reasons.

Type II Collagen (immunostain)

Freed et al., Exp Cell Res 240: 58, 1998

Bioreactor vs. conventional culture

(for chondrogenesis)

Exp Cell Res 240:58, 1998

Bio/Technol 12:689, 1994

Bioreactors improve size and structure (engineered cartilage)

Bioreactor:

Image removed for copyright reasons.

Petri dish:

⊢⊢ 1 mm

Pei et al., FASEB J. 16: 1691, 2002

Bioreactors improve molecular properties (engineered cartilage)

Type II Collagen (band intensity)

Pei et al., FASEB J. 16: 1691, 2002

Culture systems for engineering heart

	static	rotating	perfused
	petri dish	bioreactor	cartridge
Mechanism	none	rotational flow,	recirculation
of mixing		construct settling	of medium
Flow pattern	none	laminar	laminar
Gas exchange	surface	internal	external
	aeration	membrane	membrane
Mass transfer	diffusion	convection	convection

Bursac et al., Tissue Eng. 9: 1243, 2003

Appropriate electrical properties with heart cells cultured on scaffold in bioreactor

Bursac et al., *Tissue Eng.* 9: 1243, 2003

Summary

Culture conditions key for tissue engineering:

- Defined culture media induce cell differentiation by providing key regulatory factors
- Biomaterial scaffolds further enhance cell differentiation by providing a 3-D culture environment, and can influence mechanical properties of engineered tissues.
- Bioreactors improve cell seeding and functional tissue development by providing mixing, mass transport, and biophysical stimulation.

Acknowledgments

Robert Langer, MIT Gordana Vunjak-Novakovic, MIT Paul G. Neitzel, Georgia Tech Frederick Schoen, Harvard Maria A. Rupnick, Harvard Farshid Guilak, Duke

I van Martin Torsten Blunk Maria Papadaki Shane Williams Ming Pei Keith Gooch Jens Riesle Dirk Schaefer Hyoungshin Park Enrico Tognana

Bojana Obradovic Nenad Bursac Milica Radisic Joachim Seidel Rebecca Carrier Jan Boublik

Li Zeng

Fen Chen

NASA grants NCC8-174, NAG9-1557, NNJ04HC72G Fidia sponsored research grant 009337