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Problem 1

A. The hypodermic needle in the figure below contains a saline solution. If a plunger of area A
is pushed in at a steady rate (V ), what is the mean exit velocity (Ve) of solution leaving the
needle of area Ae? Assume no leakage past the plunger.

Using conservation of mass:

AV = AeVe

Ve = V
A

Ae

B. If there is leakage back past the plunger equal to one-third the volume flow rate from the
needle, find an expression for Ve.

If one-third of the needle flow rate leaks back past the plunger we would have:

AV = AeVe +
1

3
AeVe =

4

3
AeVe

Ve =
3

4
V

A

Ae

C. Neglecting leakage past the plunger, find an expression for the pressure at the face of the
plunger if the fluid exits the needle at atmospheric pressure and the fluid can be treated as
though it were inviscid. The flow can be treated as steady.

V

Area = A

Ae

Ve

Using Bernoulli’s equation between a point on the plunger and the end of the needle:

P1 +
1

2
ρV 2

1 = Patm +
1

2
ρV 2

e

P1 − Patm =
1

2
ρ

�

V 2
e − V 2

1

�

but V1, Ve were given above in A.

P1 =
1

2
ρV 2

�

�

A

Ae

�2

− 1

�
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assuming Patm ≡ 0

1 2
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Problem 2 

A common type of viscometer consists of a cone rotating against a fixed plate, as shown in Figure 
1. Show from physical arguments (or otherwise) that the shear rate is independent of r . (Hint: 
vφ = A(r )z.) Explain how this viscometer can be used to construct the stress-strain relationship 
of a non-Newtonian fluid like blood, when the torque T on the cone and the angular speed ω are 
known. 

Figure 1: 

R 

z 

Tω 

r 

In order to construct a flow curve for the unknown fluid we must measure both the shear rate 
and the shear stress of the fluid. We are given the cone viscometer with angular velocity ω and 
torque T . The cone angle, θ , is very small, so we make the following approximations: 

tan θ ≈ sin θ ≈ θ; cos θ ≈ 1; R cos θ ≈ R 

The angular velocity ω should tell us about shear rate. Let us consider a band of fluid at a 
distance r from the center that is dr wide and h high. (See Figure 2.) h is given by the geometry of 
the device and is 

h = r tan θ = r θ 

The velocity of the cone would be ωr at the selected radius. The shear rate, γ̇ , would then be 

∂vφ ωr 
γ̇ = = = ωθ 

∂z r θ 

Note that γ̇ is independent of the radius, r . 
Next we need to relate the applied torque, T , to the shear stress, τ . The shear force acting on 

the differential surface ring of width dr and radius r would be 

dF = τ(r )2πr dr


In our case, τ(r ) is actually not a function of r .


∂vφ µω 
τ = µ = 

∂z θ 
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Figure 2: 
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The contribution of dF to the torque would then be 

dT = r dF = 2πτr 2dr 

The total torque would then be 

� R � R 2πτ R3 

T = 2πτr 2dr = 2πτ r 2dr = 
0 0 3 

So 

3T 
τ = 

2π R3 

Finally, we can use the measured torque and angular velocity to measure viscosity, µ. 

µω 3T 
τ = = 

θ 2π R3 

3T θ 
µ = 

2πµω 
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Problem 3 

Consider laminar viscous flow in a cylindrical vessel. Show that the magnitude of the shear rate at 
the wall is given by: 

∂v � 8v̄
γ̇ = = 

� D∂r wall 

where v̄ is the average flow velocity through the vessel and D is the diameter. 

∂v � 
γ̇ = 

∂r r =a 

The velocity profile for laminar viscous flow (Poiseuille flow) has the parabolic profile 

� 2 � 

r 
u(r ) = 1 − u(0) 

a2 

where u(0) is the centerline velocity 

du 2r 
= − u(0)

dr a2 

dv � 2 
� = − u(0) 
� adr r =a 

Noting that mean velocity, v̄, is half the centerline velocity: 

1 
ū = u(0)

2 
D = 2a 

dv � 8v̄
� = − 
� Ddr r =a 

The magnitude is simply the absolute value, which is γ̇ = ∂v = 8 
D 
v̄

∂r r =a 
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Problem 4

One simple and instructive model of the flow of erythrocytes through the capillaries is shown in
the sketch below. The erythrocyte fills the tube so that a bolus of plasma is trapped between each
pair of cells and travels with the cells.

If the distance between cells, l, is large compared to the capillary diameter D, the velocity
profile in the plasma between the cells is nearly that of a Poiseuille flow. Show that the plasma
centerline velocity, V1, is twice the erythrocyte velocity V0.

V0 V0
V1

l

D

u(r)r

Only when the cells are far apart will the flow be fully developed as given in the problem. Since
a bolus of fluid is trapped, the flow rates of fluid near the cells and in the middle must be equal.

u(r) = v1

�

1 −

�

2r

D

�2
�

Poiseuille Flow

��

u(r)dr rdθ = π

�

D

2

�2

v0

2π

� D/2

0
v1

�

1 −

�

2r

D

�2
�

rdr = π

�

D

2

�2

v0

2πv1

�

1

2

�

D

2

�2

−

�

2

D

�2 1

4

�

D

2

�4
�

= π

�

D

2

�2

v0

v1 = 2v0

P.S. The flow behind the red cell is complicated. Nevertheless, the average flow rate must equal v0.
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Problem 5 

A.	 A patient has a diseased aortic valve. The valve does not leak, but it has stenosis leading to 
maximum velocity of 5 meter/sec exiting the valve. If the peak flow rate in systole through 
the valve is 350 ml/sec and the left ventricular outflow tract area is 3.2 square centimeters, 
what is the maximal systolic gradient across the valve? What are the assumptions that you 
made, and why are they reasonable? 

Bernoulli: 

•	 temporal term out → valid at peak since d
d
v 
t = 0, so okay 

•	 inertia (over shear) dominates → check Re, know from lecture the Re, aorta huge! So 
okay 

Vmax = 5 m/s 

A 2 = 3.2 cm

Qpeak = 350ml/sec 

Q = A1 V1 = A2V2 

350ml/sec = A2(5m/sec)(100cm/m) 

A2 = .7cm2 

2�P = 
1 
ρ v2 − v 2 

2 1 

1	 2 
= 

2 
(1) (500cm/s)2 

− (109cm/s) (dyne/cm2) 

= 119059.5dyne/cm2 = 89.5mmHg 
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B.	 Occasional patients have stenosis of the aortic valve, but also have a narrowed left ventricular 
outflow tract just proximal to the valve. If the maximal systolic velocity exiting the aortic 
valve stenosis is 5 meters/sec and the flow rate is 350 ml/sec but the outflow tract area is now 
1.5 square centimeters, what is the maximal gradient across the valve? 

350ml/sec = A1V1 = (1.5cm2)V1 

V1 = 233.3cm2 

2�P = 
1 
ρ v2 − v 2 

2 1 

2 = 
1 
(1) (500cm/s)2 − (233.3cm/s) (dyne/cm2)

2 
= 97778dyne/cm2 = 73.5mmHg 

C. For both of the above cases, calculate the area of the vena contracta (the area of the smallest 
region of the jet). Is the TRUE valve area larger or smaller than the vena contracta area? 

case 1 

350ml/sec = A2(500cm/sec) 

A2 = .7cm2 

case 2 

350ml/sec = A2(500cm/sec) 

A2 = .7cm2 

vena contracta 

valve 

The true valve is bigger than the vena contracta → that’s why the Gorlin constant is different 
for different valve geometries. 
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