MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Departments of Electrical Engineering, Mechanical Engineering, and the Harvard-MIT Division of Health Sciences and Technology

6.022J/2.792J/BEH.371J/HST.542J: Quantitative Physiology: Organ Transport Systems

QUIZ 3

SOLUTIONS

R_{rs} (respiratory system R)	=	4	mbar·s/l
C_{cw}	=	200	ml/mbar
C_{lung}	=	200	ml/mbar
V_D (Anatomic)	=	150	ml
V'_{O_2}	=	274	ml/min
$V_{\rm CO_2}^{\prime^2}$	=	220	ml/min
RQ	=	0.8	
Q_s/Q_T (Shunt fraction)	<	0.05	
Q_T (cardiac output)	=	5	l/min
P _{atm}	=	760	mmHg
$P_{v_{\rm CO_2}}$	=	46	mmHg
$P_{v_{O_2}}$	=	40	mmHg
$P_{a_{\rm CO_2}}$	=	40	mmHg
$P_{a_{O_2}}$ (at room air)	=	100	mmHg
(A - a)DO2	\approx	6-10	mmHg
рН	=	7.4	
cHb	=	15	g/100ml-blood
Hb O ₂ Binding capacity	=	20.1	ml O ₂ /100ml blood
FRC	=	2.4	1

These are normal values of physiological parameters for a 70 kg person.

The normal hemoglobin O_2 saturation curve is also included and should be used only when there is no alternative data available.

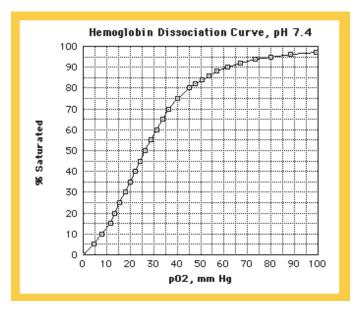


Figure 1:

The first two problems are cases that include certain respiratory physiologic abnormalities. You can use the normal values as a reference, or in absence of additional information.

Problem 1 (Case 1)

A patient comes to the emergency ward with shortness of breath and wheezing. He is breathing room air at a rate of 30 breaths per minute, and the pulse oximeter shows his arterial blood saturation to be $S_{a_{0_2}} = 0.80$.

Arterial and mixed venous blood samples are taken at arrival and reveal the following values:

$P_{v_{\rm CO_2}}$	=	44	mmHg
$P_{v_{O_2}}$	=	27	mmHg
$P_{a_{\rm CO_2}}$	=	39	mmHg
$P_{a_{O_2}}$ (at room air)	=	20	mmHg

The blood gas data comes with a computer generated caution questioning the validity of the measurements.

A. Please identify which of the four blood gas values may have an error and explain your reasoning. (25%)

 $P_{a_{O_2}}$ cannot be correct for two reasons:

- (i) $P_{a_{O_2}}$ is always $\geq P_{v_{O_2}}$
- (ii) $P_{a_{O_2}} = 20$ is not compatible with $S_{a_{O_2}} = 0.8$. In fact $S_{a_{O_2}} \approx 0.35$.

B. You need to make a best guess to treat the patient with the knowledge available to you; can you find an approximate value of the erroneous blood gas? (25%)

For $S_{a_{O_2}} = 0.8$, $P_{a_{O_2}} = 45$ (from the O_2 saturation curve).

C. The patient is given 100% O₂ by mask and one hour later his blood gases come back:

$$P_{v_{\text{CO}_2}} = 48 \text{ mmHg}$$

$$P_{v_{\text{O}_2}} = 47 \text{ mmHg}$$

$$P_{a_{\text{CO}_2}} = 42 \text{ mmHg}$$

$$P_{a_{\text{O}_2}} = 60 \text{ mmHg}$$

This time without caution notes.

What can you say about the cause of gas exchange impairment in this patient? (50%) Hint, you can ignore the oxygen carrying capacity of plasma in your calculations.

From alveolar gas eq:

$$P_{A_{O_2}} \approx F_{I_{O_2}} \left(P_{atm} - P_{H_2O} \right) - \frac{P_{a_{CO_2}}}{RQ}$$
$$= 1(713) - \frac{42}{0.8} = 660 \gg 60$$

Given that the paitent is breathing at $F_{I_{O_2}} = 1$, this large $660 - 60 = (A - a)_{D_{O_2}}$ gradient can only be explained by shunt.

Using the approximate shunt equation

$$\frac{Q_s}{Q_t} = \frac{1 - sat_{a,O_2}}{1 - sat_{v,O_2}} = \frac{1 - 0.9}{1 - 0.82} = \frac{0.1}{0.18} = 0.56$$

This patient has a 56% shunt fraction.

Problem 2 (Case 2)

The same patient eventually develops respiratory failure and is placed on a mechanical ventilator adjusted to parameters matching his tidal breathing:

VT = 390 ml f = 30 bpm $T_{ins} = 40\%$ $T_{exp} = 50\%$ $F_{iO_2} = 0.50$

And his blood gases are measured as:

$P_{v_{\rm CO_2}}$	=	42	mmHg
$P_{v_{O_2}}$	=	45	mmHg
$P_{a_{\rm CO_2}}$	=	40	mmHg
$P_{a_{O_2}}$	=	275	mmHg
\dot{V}_{O_2} \dot{V}_{CO_2}	=	274	ml/min
$\dot{V}_{\rm CO_2}$	=	220	ml/min

The ventilator output shows the following screen

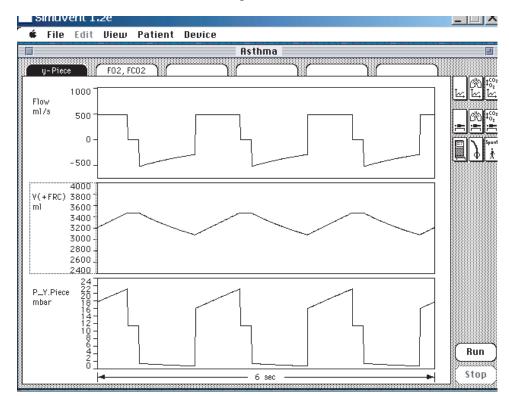


Figure 2:

A. Is this patient exhibiting dynamic hyper-inflation, and why or why not? (25%)

Yes, because expiratory flow at the end of exhalation is non-zero.

B. Can you estimate the patient's respiratory system mechanical parameters: Resistance and Compliance? (25%)

$$R = \frac{P_{peak} - P_{plateau}}{\dot{V}} = \frac{21 - 11}{\frac{V_T}{t_{insp}}} = \frac{10}{\left(\frac{390}{2 \times 0.4}\right)}$$

= 2.05 mbar·s/L
$$C = \frac{V_T}{P_{peak} - P_{ini}} = \frac{390}{21 - 16} = 78 \text{ ml/mbar}$$
$$RC = 78 \times 0.0205 = 1.6 \text{ sec}$$

C. The attending MD suggests decreasing frequency while keeping the inspiration (insufflation in Germanic English) and exhalation time % unchanged. What frequency and tidal volume would you choose? Assume that the VD physiologic remains unchanged. (50%)

(Note: if you decide to use VD anatomic in your calculation, you will lose 25% of the question points.)

To avoid hyperinflation:

$$t_{exp} \geq 4 \times RC = 4 \times 1.6 = 6.4 \text{ sec}$$

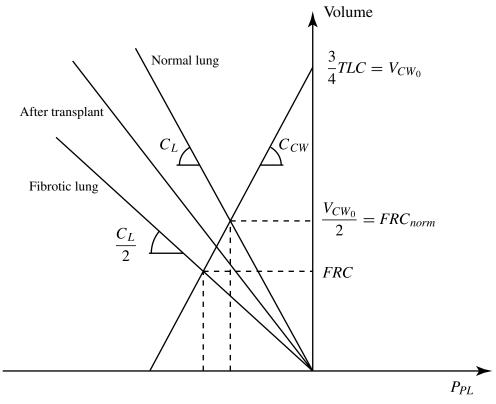
$$t_{exp}\% = 50\% \Rightarrow f_2 = \frac{1}{\frac{6.4}{0.5}} \times 60 = 4.7 \text{ bpm}$$

To keep a constant \dot{V}_A , we need to calculate a V_T such that

$$(V_{T_1} - V_D) f_1 = (V_{T_2} - V_D) f_2$$

 $V_{T_2} = (V_{T_1} - V_D) \frac{f_1}{f_2} + V_D$

We know that


$$\frac{V_D}{V_T} = 1 - \frac{V_{\text{CO}_2}}{V_T f F_{A_{\text{CO}_2}}} \qquad \text{where } F_{A_{\text{CO}_2}} \approx \frac{P_{a_{\text{CO}_2}}}{(P_{atm} - 47)}$$

$$\frac{V_D}{V_T} = 1 - \frac{220}{390 \times 30 \times \frac{40}{713}} = 0.665$$
$$V_D = 0.665 \times 390 = 259.35 \, ml$$
$$V_{T_2} = (390 - 259.35) \frac{30}{4.7} + 290.35$$
$$= 1124 \, ml$$
$$V_{T_2} = 1.124 \, L$$
$$f_2 = 4.7 \, bpm$$

Problem 3

Pulmonary fibrosis is a debilitating disease of the lung characterized by replacement of elastin by collagen and resulting in a decrease of lung compliance. In severe cases, lung transplant is the only option for survival. To maximize organ availability and reduce post-operative mortality, usually unilateral lung transplant is conducted.

A. First draw the normal chest wall and lung compliance curves. Then draw changes that result from pulmonary fibrosis (C_L reduced by 1/2). Assume that compliances are linear and that the chest wall compliance does not change. What happens with FRC in pulmonary fibrosis? (25%)

For CW:

$$V_{CW} = V_{CW_0} + P_{PL}C_{CW} \rightarrow P_{PL} = \frac{V_{CW} - V_{CW_0}}{C_{CW}}$$

For lungs:

$$V_L + \left(\underbrace{P_{a_0}}_{=0} - P_{PL}\right) C_L = -P_{PL}C_L \rightarrow P_{PL} = \frac{-V_L}{C_L}$$

FRC = *Lung Volume, where* $V_L = V_{CW}$ *and* $P_{PL_{CW}} = P_{PL_L}$.

$$\Rightarrow \frac{V_{CW} - V_{CW_0}}{C_{CW}} = \frac{-V_L}{C_L}$$

For $V_L = V_{CW} = FRC$

$$FRC - V_{CW_0} = -FRC \frac{C_{CW}}{C_L}$$
$$FRC = \frac{V_{CW_0}}{1 + \frac{C_{CW}}{C_L}}$$

For normal lung

$$C_{CW} = C_L \to FRC = \frac{V_{CW_0}}{2}$$

For fibrotic lung

$$C_{L_F} = \frac{C_L}{2} \to FRC = \frac{V_{CW_0}}{1 + \frac{1}{1/2}} + \frac{V_{CW_0}}{3}$$

B. Second, draw the effects of replacing one of the lungs with a normal donor lung. What will be the new FRC after surgery? You can assume that both right and left lungs have equal compliance before surgery. (25%)

After transplant:

So

$$FRC = \frac{V_{CW_0}}{1 + \frac{4}{3}} = \frac{3}{7}V_{CW_0}$$

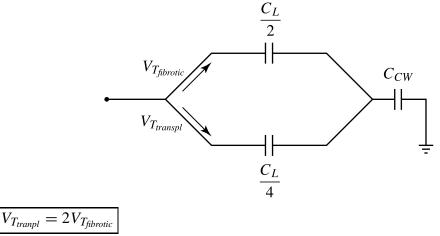
C. How does the amount of pressure required to inspire a similar tidal volume compare between before and after surgery? (25%)

Total lung compliance

Before transplant:

$$C_{L_F} = \frac{1}{2}C_L = \frac{V_T}{\Delta P} \Rightarrow \Delta P = \frac{V_T}{\left(\frac{C_L}{2}\right)}$$

After transplant:


$$C_{L,post} = \frac{C_{LF}}{2} + \frac{C_L}{2} = \frac{C_L}{4} + \frac{C_L}{2} = \frac{3}{4}C_L$$
$$\Delta P_{after} = \frac{V_T}{\frac{3}{4}C_L} \rightarrow \Delta P_{after} = \frac{4}{3}\left(\frac{V_T}{C_L}\right)$$
$$\Delta P_{before} = \frac{V_T}{\left(\frac{C_L}{2}\right)} = 2\left(\frac{V_T}{C_L}\right)$$

For the same V_T

$$\frac{\Delta P_{after}}{\Delta P_{before}} = \frac{\frac{4}{3}}{2} = \frac{2}{3}$$

After transplant the person needs two-thirds the pleural pressure to generate the same total V_T .

- D. In what proportions is the tidal volume distributed between both lungs? (25%)
 - V_T distributes with regional C.

