Decision Analysis & Decision Support 6.872/HST.950

Tasks?

- Mechanics
 Record keeping
 Administration
 Scheduling
 ...
 Diagnosis
- ➢ Prognosis
- > Therapy

Types of Decision Support

- "Doctor's Assistant" for clinicians at any level of training
- Expert (specialist) consultation for nonspecialists
- Monitoring and error detection
- Critiquing, what-if
- Guiding patient-controlled care
- Education and Training
- Contribution to medical research

Two Historical Views on How to Build Expert Systems

- Great cleverness
 - Powerful inference abilities
 - ➤Ab initio reasoning
- Great stores of knowledge
 - ➢Possibly limited ability to infer, but
 - Vast storehouse of relevant knowledge, indexed in an easy-to-apply form

Change over 30 years

- 1970's: human knowledge, not much data
- 2000's: vast amounts of data, traditional human knowledge (somewhat) in doubt
- Could we "re-discover" all of medicine from data? I think not!
- Should we focus on methods for reasoning with uncertain data? *Absolutely!*
- But: Feinstein, A. R. (1977). "Clinical Biostatistics XXXIX. The Haze of Bayes, the Aerial Palaces of Decision Analysis, and the Computerized Ouija Board." <u>Clinical Pharmacology and Therapeutics</u> 21: 482-496.

Cancer Test

- We discover a cheap, 95% accurate test for cancer.
- Give it to "Mrs. Jones", the next person who walks by 77 Mass Ave.
- Result is positive.
- What is the probability that Mrs. Jones has cancer?

Figuring out Cancer Probability

Assume Ca in 1% of general population:

At the Extremes

- If Ca probability in population is 0.1%,
 Then post positive result, p(Ca)=1.87%
- If Ca probability in population is 50%,
 Then post-positive result, p(Ca)=95%

Bayes' Rule

$P(D \mid T) = \frac{P(D)P(T \mid D)}{P(D)P(T \mid D) + P(\overline{D})P(T \mid \overline{D})}$

Odds/Likelihood Form

 $P(D \mid T) = \frac{P(D)P(T \mid D)}{P(D)P(T \mid D) + P(\overline{D})P(T \mid \overline{D})}$

 $P(\overline{D} \mid T) = \frac{P(\overline{D})P(T \mid \overline{D})}{P(D)P(T \mid D) + P(\overline{D})P(T \mid \overline{D})}$

 $\frac{P(D \mid T)}{P(\overline{D} \mid T)} = \frac{P(D)}{P(\overline{D})} \frac{P(T \mid D)}{P(T \mid \overline{D})}$ $O(D \mid T) = O(D)L(T \mid D)$ $W(D \mid T) = W(D) + W(T \mid D)$

DeDombal, *et al.* Experience 1970's & 80's

- "Idiot Bayes" for appendicitis
- 1. Based on expert estimates -- *lousy*
- 2. Statistics -- better than docs
- 3. Different hospital -- lousy again
- 4. Retrained on local statistics -- good

Rationality

- Behavior is a continued sequence of choices, interspersed by the world's responses
- Best action is to make the choice with the greatest expected value
- ... decision analysis

Example: Gangrene

- From Pauker's "Decision Analysis Service" at New England Medical Center Hospital, late 1970's.
- Man with gangrene of foot
- Choose to amputate foot or treat medically
- If medical treatment fails, patient may die or may have to amputate whole leg.
- What to do? How to reason about it?

Decision Tree for Gangrene

Evaluating the Decision Tree

Decision Analysis: Evaluating Decision Trees

- Outcome: directly estimate value
- Decision: value is that of the choice with the greatest expected value
- Chance: expected value is sum of (probabilities x values of results)
- "Fold back" from outcomes to current decision.
- Sensitivity analyses often more important than result(!)

HELP System uses D.A.

Image by MIT OpenCourseWare. Adapted from Warner, Homer R. "Computer-assisted medical decision making." Academic Press, 1979.

Warner HR, *Computer-Assisted Medical Decision Making*, Acad. Press 1979

Utility Analysis of Appendectomy

Image by MIT OpenCourseWare. Adapted from Warner, Homer R. "Computer-assisted medical decision making." Academic Press, 1979.

PROB OF APPENDICITIS

- A APPENDICITIS BY HISTORY
- B REBOUND TENDERNESS IN RLQ
- C PRIOR APPENDECTOMY
- D IF C THEN EXIT
- E WHITE BLOOD COUNT (WBCx100) TH/M3, LAST
- F PROB B A 620 90
- G PROB F 43 18 9, 74 23 7, 93 18 11, 108 10 11, 121 16 13, 134 6 16, 151 5 16, 176 4 14

FVAL G

UTILITY OF APPENDECTOMY IS ESTIMATED AS \$----

A (A) AGE

B SEX

- C (A) SALARY, GET A/365
- D JOB, PERCENT ACTIVITY NEEDED

E LEA,B

- F DLOS D 30 1, 65 2, 80 4, 90 1, 100 0
- G DLOS D 40 1, 80 4, 95 5, 100 0 ...
- I COND E, F, 7, 1800, 0, C
- J COND E, G, 1, 900, 0, C ...

M PROB OF APPENDICITIS

- N UTIL M, I, J, K, L
- O IF N LT 0, EXIT

FVAL N

"Paint the Blackboards!"

DECISION PATIENT STATE UTILITY

Threshold

- Benefit B = U(treat dis) U (no treat dis)
- Cost C = U(no treat no dis) U(treat no dis)
- Threshold probability for treatment:

$$T = \frac{1}{\frac{B}{C} + 1}$$

Pauker, Kassirer, NEJM 1975

Test/Treat Threshold

Figure removed due to copyright restrictions. See Kassirer, Jerome P., and Stephen G. Pauker. "Should Diagnostic Testing be Regulated?" *New England Journal of Medicine* (1978).

Visualizing Thresholds

Figure removed due to copyright restrictions. See Kassirer, Jerome P., and Stephen G. Pauker. "Should Diagnostic Testing be Regulated?" *New England Journal of Medicine* (1978).

More Complex Decision Analysis Issues

- Repeated decisions
- Accumulating disutilities
- Dependence on history
- Cohorts & state transition models
- Explicit models of time
- Uncertainty in the uncertainties
- Determining utilities
 Lotteries, …
- Qualitative models

Example: Acute Renal Failure

- Based on Gorry, et al., AJM 55, 473-484, 1973.
- Choice of a handful (8) of therapies (antibiotics, steroids, surgery, etc.)
- Choice of a handful (3) of invasive tests (biopsies, IVP, etc.)
- Choice of 27 diagnostic "questions" (patient characteristics, history, lab values, etc.)
- Underlying cause is one of 14 diseases
 - We assume one and only one disease

Decision Tree for ARF

- Choose:
 - Surgery for obstruction
 - Treat with antibiotics
 - Perform pyelogram
 - Perform arteriography
 - Measure patient's temperature
 - Determine if there is proteinuria

Decision Tree for ARF

Surgery for obstruction Treat with antibiotics Perform pyelogram Perform arteriography Measure patient's temperature Determine if there is proteinuria

Value = ???

What happens when we act?

- Treatment: leads to few possible outcomes
 - different outcomes have different probabilities
 - probabilities depend on distribution of disease probabilities
 - value of outcome can be directly determined
 - value may depend on how we got there (see below)
 - therefore, value of a treatment can be determined by expectation
- Test: lead to few results, revise probability distribution of diseases, and impose disutility
- Questions: lead to few results, revise probability distribution

Initial probability distribution

Acute tubular necrosis	0.250
Functional acute renal failure	0.400
Urinary tract obstruction	0.100
Acute glomerulonephritis	0.100
Renal cortical necrosis	0.020
Hepatorenal syndrome	0.005
Pyelonephritis	0.010
Atheromatous Emboli	0.003
Renal infarction (bilateral)	0.002
Renal vein thrombosis	0.002
Renal vasculitis	0.050
Scleroderma	0.002
Chronic glomerulonephritis, acute exacerbation	0.030
Malignant hypertension & nephrosclerosis	0.030
	Functional acute renal failure Urinary tract obstruction Acute glomerulonephritis Renal cortical necrosis Hepatorenal syndrome Pyelonephritis Atheromatous Emboli Renal infarction (bilateral) Renal vein thrombosis Renal vasculitis Scleroderma Chronic glomerulonephritis, acute exacerbation

ARF's Database: P(obs|D)

Conditional probabilities for	Probabilities		
<u>Proteinuria</u> Diseases	0	Trace to 2+	3+ to 4+
ATN	0.1	0.8	0.1
FARF	0.8	0.2	0.001
OBSTR	0.7	0.3	0.001
AGN	0.01	0.2	0.8
CN	0.01	0.8	0.2
HS	0.8	0.2	0.001
PYE	0.4	0.6	0.001
AE	0.1	0.8	0.1
RI	0.1	0.7	0.2
RVT	0.001	0.1	0.9
VASC	0.01	0.2	0.8
SCL	0.1	0.4	0.5
CGAE	0.001	0.2	0.8
MH	0.001	0.4	0.6

Questions

- Blood pressure at onset
- proteinuria
- casts in urine sediment
- hematuria
- history of prolonged hypotension
- urine specific gravity
- large fluid loss preceding onset
- kidney size
- urine sodium
- strep infection within three weeks
- urine volume
- recent surgery or trauma
- age
- papilledema
- flank pain

- history of proteinuria
- symptoms of bladder obstruction
- exposure to nephrotoxic drugs
- disturbance in clotting mechanism
- pyuria
- bacteriuria
- sex
- transfusion within one day
- jaundice or ascites
- ischemia of extremities or aortic aneurism
- atrial fibrillation or recent MI

Invasive tests and treatments

- Tests
 - biopsy
 - retrograde
 pyelography
 - transfemoral arteriography

- Treatments
 - steroids
 - conservative therapy
 - iv-fluids
 - surgery for urinary tract obstruction
 - antibiotics
 - surgery for clot in renal vessels
 - antihypertensive drugs
 - heparin

Updating probability distribution

 $P_i(D_j)P(S|D_j)$ $P_{i+1}(D_{j}) = P_{i+1}(D_{j})$ n $\sum_{k=1}^{N} P_i(D_k) P(S|D_k)$

Bayes' rule

Value of treatment

- Three results: improved, unchanged, worsened
 - each has an innate value, modified by "tolls" paid on the way
- Probabilities depend on underlying disease probability distribution

$$Tx \qquad p_{I} \qquad V(I)$$

$$Tx \qquad p_{U} \qquad V(U)$$

$$W \qquad V(W)$$

Modeling treatment

		Steroids	
	improved	unchanged	worse
atn	0.60	0.20	0.20
farf	0.05	0.35	0.60
obstr	0.05	0.60	0.35
agn	0.40	0.40	0.20
cn	0.05	0.75	0.20
hs	0.05	0.05	0.90
руе	0.05	0.05	0.90
ae	0.05	0.70	0.25
ri	0.01	0.14	0.85
rvt	0.10	0.30	0.60
vasc	0.15	0.25	0.60
scl	0.05	0.05	0.90
cgae	0.40	0.35	0.25
mh	0.05	0.05	0.90

Utilities:

improved: 5000

unchanged: -2500

worse: -5000

Modeling test: transfemoral arteriography

	p(clot)	cost	
atn	0.01	500	
farf	0.01	800	
obstr	0.01	500	
agn	0.01	500	
cn	0.01	500	
hs	0.01	800	
руе	0.01	500	
ae	0.03	800	
ri	0.85	500	
rvt	0.50	500	
vasc	0.01	500	
scl	0.01	500	
cgae	0.01	500	
mh	0.01	500	

How large is the tree?

- Infinite, or at least (27+3+8)^(27+3+8), ~10^60
- What can we do?
 - Assume any action is done only once
 - Order:
 - questions
 - tests
 - treatments
- 27! x 4 x 3 x 2 x 8, ~10^30
- Search, with a *myopic evaluation function*
 - like game-tree search; what's the static evaluator?
 - Measure of certainty in the probability distribution

How many questions needed?

- How many items can you distinguish by asking 20 (binary) questions? 2^20
- How many questions do you need to ask to distinguish among *n* items? log₂(*n*)
- Entropy of a probability distribution is a measure of how certainly the distribution identifies a single answer; or how many more questions are needed to identify it

Entropy of a distribution

$$H_i(P_1,...,P_n) = \sum_{j=1}^n -P_j \log_2 P_j$$

For example: H(.5, .5) = 1.0 H(.1, .9) = 0.47 H(.01, .99) = 0.08H(.001, .999) = 0.01

H(.33, .33, .33) = 1.58 (!) H(.005, .455, .5) = 1.04 H(.005, .995, 0) = 0.045

(!) -- should use \log_n

Interacting with ARF in 1973

Question 1: What is the patient's age?

- 1 0-10
- 2 11-30
- 3 31-50
- 4 51-70
- 5 Over 70
- Reply: 5

The current distribution is: Disease Probability FARF 0.58 IBSTR 0.22 ATN 0.09

Question 2: What is the patient's sex?

- 1 Male
- 2 Pregnant Female
- 3 Non-pregnant Female

Reply: <u>1</u>

. . .

ARF in 1994

		Probabilistic Rea	isoner	
ATN	0.000		Select a question to explore	
FARF	0.006		Pyuria	0.14公
	-		Bacteriuria	0.17
UBSIR	0.966		Urine Specific Gravity	0.21
AGN	0.000		Symptoms Of Bladder Obstruction Casts In Urine Sediment	0.22
CN	0.000		Flank Pain	0.22 0.23
HS	0.000		Urine Sodium	0.23
Sec	963		Hematuria	0.23
PYE	0.027		History Of Proteinuria	0.24
AE	0.000		Skin Intestinal Or Lung Lesions	0.24
RI	0.000		Strep Infection Within Three Weeks	0.24
RYT	0.000		Recent Surgery Or Trauma	0.24
2			Papilledema Ischemia Of Extremities Or Aortic Aneury	0.24
VASC	0.000	0.000		
SCL	0.000		Exposure To Nephrotoxic Drugs	0.24
CGAE	0.000		Disturbance In Clotting Mechanism Jaundice Or Ascites	0.24 0.24
мн			Transfusion Within One Day	0.24
	0.000		Atrial Fib Or Recent Mi	0.24
0.24	60 60 M	63 Bi	History Of Prolonged Hypotension	Not
			>30 5 30	0.074
			<5 Commit Answer) (Dec. Anal.)	0.780 ひ 日 の の の の の の の の の の の の

Local Sensitivity Analysis

Case-specific Likelihood Ratios

Therapy Planning Based on Utilities

Therapy Plan 1
The following facts are known about this patient: Age: Over 70; Sex: Male; Blood Pressure At Onset: Moderately Elevated; Urine Volume: 50 400 Cc Day; Kidney Size: Large; Large Fluid Loss Preceding Onset: No; Proteinuria: Zero; History Of Prolonged Hypotension: No.
This leads to the probability distribution over the diseases: ATN: 0.000; FARF: 0.006; OBSTR: 0.966; AGN: 0.000; CN: 0.000; HS: 0.000; PYE: 0.027; AE: 0.000; RI: 0.000; RVT: 0.000; VASC: 0.000; SCL: 0.000; CGAE: 0.000; MH: 0.000.
Plans for further testing and treatment (in descending value order) are: Calculating full plan Determining best plan Plan number 1:
Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2862.9 (v=2862.9) Plan number 2:
Action RETROGRADE-PYELOGRAPHY, with possible outcomes giving ev=2400.1: Outcome O (OBSTRUCTION), with p=0.9569 Best decision gives ev=2621.8:
Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2621.8 (v=3122.3) Outcome 1 (NO-OBSTRUCTION), with p=0.0431
Best decision gives ev=-2525.9: Therapy ANTIBIOTICS has ev=-2525.9 (v=-1025.3) Plan number 3:
Action TRANSFEMORAL-ARTERIOGRAPHY, with possible outcomes giving ev=2361.0: Outcome O (CLOT), with p=0.0100 Best decision gives ev=2359.4:
Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2359.4 (v=2861.3) Outcome 1 (NO-CLOT), with p=0.9900 Best decision gives ev=2361.0:
Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2361.0 (v=2862.9) Plan number 4:
Action BIOPSY, with possible outcomes giving ev=1862.8:

Assumptions in ARF

- Exhaustive, mutually exclusive set of diseases
- Conditional independence of all questions, tests, and treatments
- Cumulative (additive) disutilities of tests and treatments
- Questions have no modeled disutility, but we choose to minimize the number asked anyway

HST.950J / 6.872 Biomedical Computing Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.