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What Probabilistic Models

Should We Use?


•	 Full joint distribution 

•	 Completely expressive 

•	 Hugely data-hungry 

•	 Exponential computational complexity 

•	 Naive Bayes (full conditional independence) 

•	 Relatively concise 

•	 Need data ~ (#hypotheses) × (#features) × (#feature-vals) 

•	 Fast ~ (#features) 

•	 Cannot express dependencies among features or among 
hypotheses 

•	 Cannot consider possibility of multiple hypotheses co
-
occurring




                           

Bayesian Networks

(aka Belief Networks)


•	 Graphical representation of dependencies among a set of random 
variables 

•	 Nodes: variables 

•	 Directed links to a node from its parents: direct probabilistic 
dependencies 

•	 Each Xi has a conditional probability distribution, 
P(Xi|Parents(Xi)), showing the effects of the parents on the 
node. 

•	 The graph is directed (DAG); hence, no cycles. 

•	 This is a language that can express dependencies between Naive 
Bayes and the full joint distribution, more concisely 

• Given some new evidence, how does this affect the probability

of some other node(s)? P(X|E) —belief propagation/updating


•	 Given some evidence, what are the most likely values of other 
variables? —MAP explanation 



Burglary Network

(due to J. Pearl)
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If everything depends on everything
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• This model requires just as many parameters as the full joint 
distribution! 



Computing the Joint Distribution from a 

Bayes Network


•	 As usual, we abuse notation: 

• 

•	 E.g., what’s the probability that an alarm has sounded, there was 
neither an earthquake nor a burglary, and both John and Mary 
called? 



Requirements for Constructing a BN 
• Recall that the definition of the conditional probability was 

• and thus we get the chain rule,


• Generalizing to n variables,


• and repeatedly applying this idea,


• This “works” just in case we can define a partial order so that




Topological Interpretations
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A node, X, is conditionally independent of 
its non-descendants, Zi, given its parents, Ui. 

X 
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A node, X, is conditionally independent of all other 
nodes in the network given its Markov blanket: 
its parents, Ui, children,Yi, and children’s parents, 
Zi. 



BN’s can be Compact


•	 For a network of 40 binary variables, the full joint distribution has 
240 entries (> 1,000,000,000,000) 

•	 If |Par(xi)| ≤ 5, however, then the 40 (conditional) probability 
tables each have ≤ 32 entries, so the total number of parameters 
≤ 1,280 

•	 Largest medical BN I know (Pathfinder) had 109 variables! 2109 ≈ 
1036 



How Not to Build BN’s
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•	 With the wrong ordering of nodes, the network becomes more 
complicated, and requires more (and more difficult) conditional 
probability assessments 
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Order: M, J,A, B, E	 Order: M, J, E, B,A




Simplifying Conditional Probability Tables


•	 Do we know any structure in the way that Par(x) “cause” x? 

•	 If each destroyer can sink the ship with probability P(s|di), what is 
the probability that the ship will sink if it’s attacked by both? 

• For |Par(x)| = n, this requires O(n) parameters, not O(kn)


Photo by Konabish on Flickr. 
Image by MIT OpenCourseWare. Image by MIT OpenCourseWare.



Inference


•	 Recall the two basic inference problems: Belief propagation & 
MAP explanation 

•	 Trivially, we can enumerate all “matching” rows of the joint 
probability distribution 

•	 For poly-trees (not even undirected loops—i.e., only one 
connection between any pair of nodes; like our Burglary 
example), there are efficient linear algorithms, similar to 
constraint propagation 

•	 For arbitrary BN’s, all inference is NP-hard! 

•	 Exact solutions 

•	 Approximation 
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Exact Solution of BN’s

(Burglary example)


• Notes: 

• Sum over all “don’t care” variables 

• Factor common terms out of summation 

• Calculation becomes a sum of products of sums of products ... 



Poly-trees are easy


•	 Singly-connected structures 
allow propagation of 
observations via single paths 

•	 “Down” is just use of 
conditional probability 

•	 “Up” is just Bayes rule 

• Formulated as message 

propagation rules


•	 Linear time (network 
diameter) 

•	 Fails on general networks! 
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Exact Solution of BN’s

(non-poly-trees) 

• What is the probability of a specific state, say 
A=t, B=f, C=t, D=t, E=f? 

• What is the probability that E=t given B=t? 

A 

B 

D 

C 

E 

• Consider the term P(e,b)


Alas, optimal 
factoring is NP-hard • 12 instead of 32 multiplications (even in this 


small example)




Other Exact Methods
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•	 Join-tree: Merge variables into (small!) sets of variables to make 
graph into a poly-tree. Most commonly-used; aka Clustering, 
Junction-tree, Potential) 

•	 Cutset-conditioning: Instantiate a (small!) set of variables, then solve 
each residual problem, and add solutions weighted by 
probabilities of the instantiated variables having those values 
...• 

•	 All these methods are essentially equivalent; with some time-
space tradeoffs. 



Approximate Inference in BN’s


•	 Direct Sampling—samples joint distribution 

•	 Rejection Sampling—computes P(X|e), uses ancestor evidence 
nodes in sampling 

•	 Likelihood Weighting—like Rejection Sampling, but weights by 
probability of descendant evidence nodes 

•	 Markov chain Monte Carlo 

•	 Gibbs and other similar sampling methods 



Direct Sampling


function Prior-Sample(bn) returns an event sampled from bn
    inputs: bn, a Bayes net specifying the joint distribution P(X1, ... Xn)
  x := an event with n elements
  for i = 1 to n do

 xi := a random sample from P(Xi|Par(Xi))

  return x


•	 From a large number of samples, we can estimate all joint 
probabilities 

•	 The probability of an event is the fraction of all complete 
events generated by PS that match the partially specified event 

•	 hence we can compute all conditionals, etc. 



Rejection Sampling

function Rejection-Sample(X, e, bn, N) returns an estimate of P(X|e)
    inputs: bn, a Bayes net 

  X, the query variable
  e, evidence specified as an event
  N, the number of samples to be generated 

local: K, a vector of counts over values of X, initially 0

  for j = 1 to N do 
y := PriorSample(bn)
 if y	 is consistent with e then

      K[v] := K[v]+1 where v is the value of X in y
  return Normalize(K[X]) 

•	 Uses PriorSample to estimate the proportion of times each value 
of X appears in samples that are consistent with e 

•	 But, most samples may be irrelevant to a specific query, so this is 
quite inefficient 



Likelihood Weighting


•	 In trying to compute P(X|e), where e is the evidence (variables 
with known, observed values), 

•	 Sample only the variables other than those in e 

•	 Weight each sample by how well it predicts e 

l	 m

SWS(z, e)w(z, e) =  
∏ 

P (zi|Par(Zi)) 
∏ 

P (ei|Par(Ei)) 
i=1	 i=1 

=	 P (z, e) 



l mLikelihood 
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i=1 i=1Weighting 
= P (z, e) 

| |

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e)

    inputs: bn, a Bayes net 

  X, the query variable
  e, evidence specified as an event
  N, the number of samples to be generated 

local:W, a vector of weighted counts over values of X, initially 0
  for j = 1 to N do 

y,w := WeightedSample(bn,e)
 if y is consistent with e then 

W[v] := W[v]+w where v is the value of X in y
  return Normalize(W[X]) 

function Weighted-Sample(bn,e) returns an event and a weight
  x := an event with n elements; w := 1
  for i = 1 to n do

 if Xi has a value xi in e
 then w := w * P(Xi = xi | Par(Xi))
 else xi := a random sample from P(Xi | Par(Xi))

  return x,w 



function MCMC(X, e, bn, N) returns an estimate of P(X|e) Z1 
X Zn 

local: K[X], a vector of counts over values of X, initially 0 

UU1	 n 

x, the current state of the network, initially a copy of e	 Y1 Yn 

Markov chain Monte Carlo 

Z, the non-evidence variables in bn (includes X) 

initialize x with random values for the vars in Z
  for j = 1 to N do 

for each Zi in Z do 
sample the value of Zi in x from P(Zi|mb(Zi)), given the values of mb(Zi) in x 
K[v] := K[v]+1 where v is the value of X in x 

return Normalize(K[X]) 

•	 Wander incrementally from the last state sampled, instead of re-
generating a completely new sample 

•	 For every unobserved variable, choose a new value according to 
its probability given the values of vars in it Markov blanket 
(remember, it’s independent of all other vars) 

•	 After each change, tally the sample for its value of X; this will only 
change sometimes 

•	 Problem: “narrow passages” 



Most Probable Explanation


•	 So far, we have been solving for P(X|e), which yields a distribution 
over all possible values of the x’s 

•	 What it we want the best explanation of a set of evidence, i.e., the 
highest-probability set of values for the x’s, given e? 

•	 Just maximize over the “don’t care” variables rather than summing


•	 This is not necessarily the same as just choosing the value of each 
x with the highest probability 



Rules and Probabilities


•	 Many have wanted to put a probability on assertions and on 
rules, and compute with likelihoods 

•	 E.g., Mycin’s certainty factor framework 

•	 A (p=.3) & B (p=.7) ==p=.8==> C (p=?) 

•	 Problems: 

•	 How to combine uncertainties of preconditions and of rule 

•	 How to combine evidence from multiple rules 

•	 Theorem:There is NO such algebra that works when rules are 
considered independently. 

•	 Need BN for a consistent model of probabilistic inference 
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