Bayes Networks

6.872/HST.950

What Probabilistic Models Should We Use?

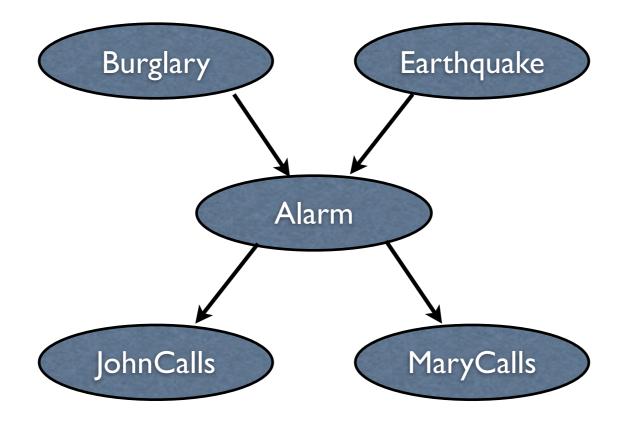
- Full joint distribution
 - Completely expressive
 - Hugely data-hungry
 - Exponential computational complexity
- Naive Bayes (full conditional independence)
 - Relatively concise
 - Need data ~ (#hypotheses) × (#features) × (#feature-vals)
 - Fast ~ (#features)
 - Cannot express dependencies among features or among hypotheses
 - Cannot consider possibility of multiple hypotheses cooccurring

Bayesian Networks (aka Belief Networks)

- Graphical representation of dependencies among a set of random variables
 - Nodes: variables
 - Directed links to a node from its *parents*: direct probabilistic dependencies
 - Each X_i has a conditional probability distribution,
 P(X_i|Parents(X_i)), showing the effects of the parents on the node.
 - The graph is directed (DAG); hence, no cycles.
- This is a language that can express dependencies between Naive Bayes and the full joint distribution, more concisely
 - Given some new evidence, how does this affect the probability of some other node(s)? P(X|E) —belief propagation/updating
 - Given some evidence, what are the most likely values of other variables? $\operatorname{argmax}_{\boldsymbol{X}} P(\boldsymbol{X}|\boldsymbol{E}) MAP explanation$

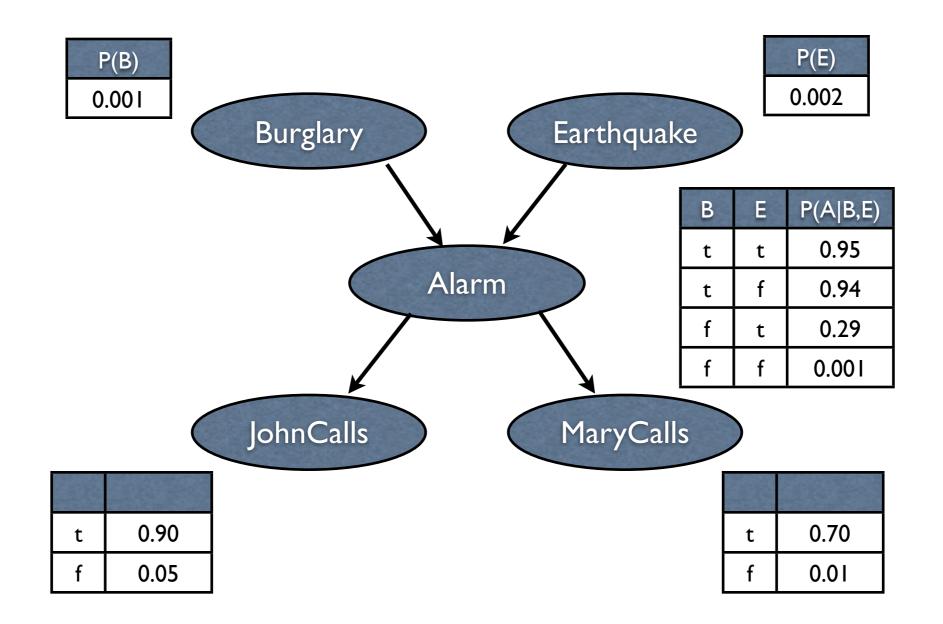
Burglary Network

(due to J. Pearl)

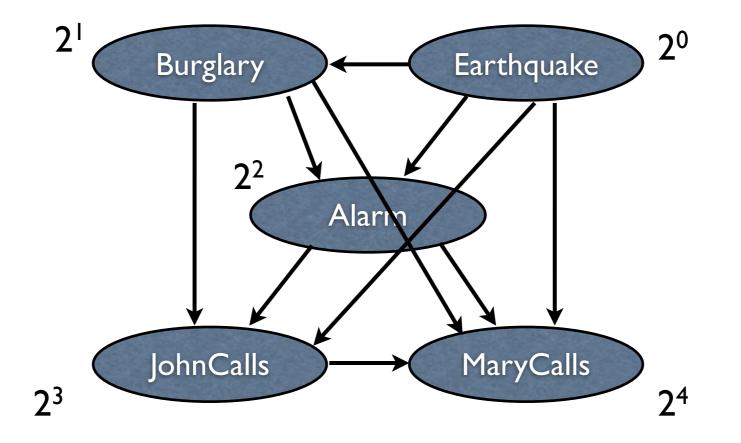


Burglary Network

(due to J. Pearl)



If everything depends on everything



This model requires just as many parameters as the full joint distribution!

Computing the Joint Distribution from a Bayes Network

• As usual, we abuse notation:

 $P(X_1 = x_1 \land \ldots \land X_n = x_n)$ is written as $P(x_1, \ldots, x_n)$

•
$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i|\operatorname{Par}(X_i))$$

 E.g., what's the probability that an alarm has sounded, there was neither an earthquake nor a burglary, and both John and Mary called?

$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$

$$= P(J|a)P(m|a)P(a|\neg b \land \neg e)P(\neg e)P(\neg b)$$

 $= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.00062$

Requirements for Constructing a BN

- Recall that the definition of the conditional probability was $P(x|y) = P(x \land y)/P(y)$
- and thus we get the chain rule, $P(x \wedge y) = P(x|y)P(y)$
- Generalizing to *n* variables, $P(x_1, \ldots, x_n) = P(x_n | x_{n-1}, \ldots, x_1) P(x_{n-1}, \ldots, x_1)$
- and repeatedly applying this idea,

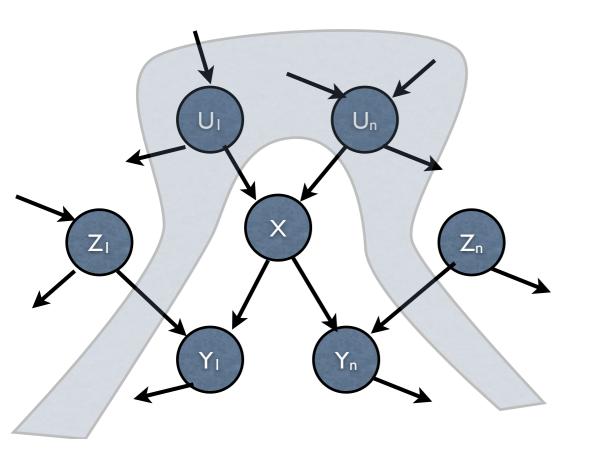
$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1} | x_{n-2}, \dots, x_1) \cdots P(x_2 | x_1) P(x_1)$$

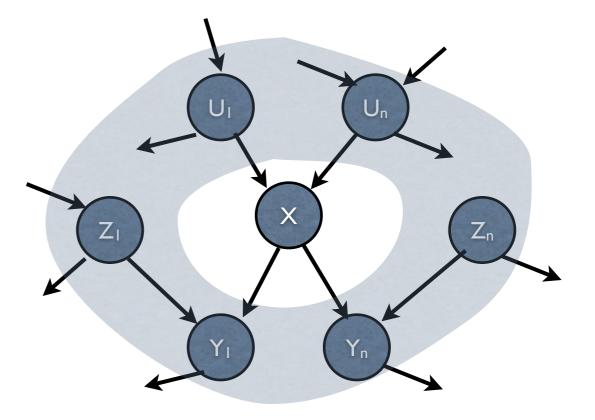
=
$$\prod_{i=1}^n P(x_i | x_{i-1}, \dots, x_1)$$

=
$$\prod_{i=1}^n P(x_i | \operatorname{Par}(x_i))$$

• This "works" just in case we can define a partial order so that $Par(X_i) \subseteq \{X_{i-1}, \dots, X_1\}$

Topological Interpretations

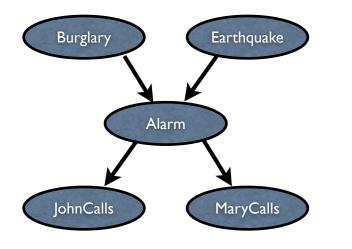




A node, X, is conditionally independent of its <u>non-descendants</u>, Z_i , given its <u>parents</u>, U_i . A node, X, is conditionally independent of all other nodes in the network given its Markov blanket: its parents, U_i, children, Y_i, and children's parents, $\underline{Z_{i}}$.

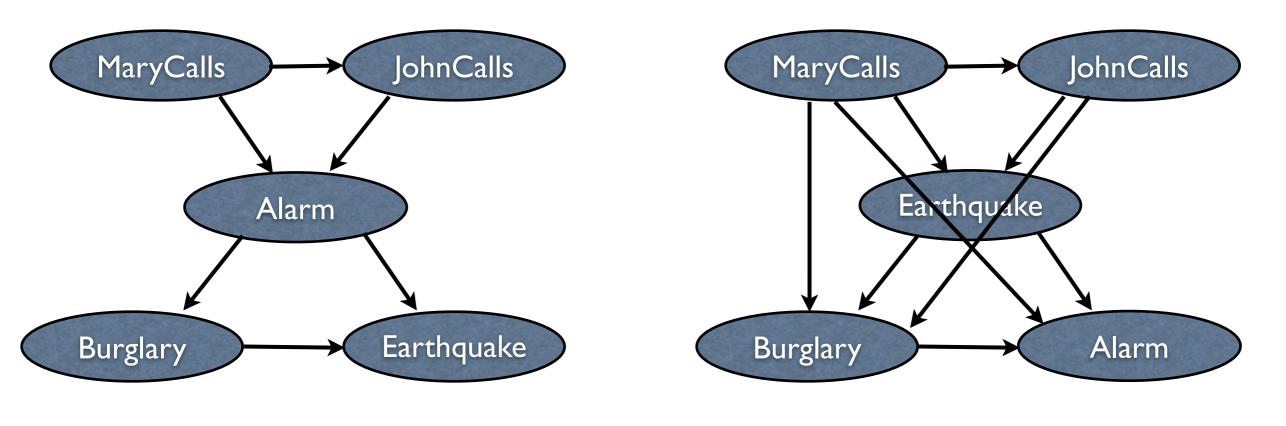
BN's can be Compact

- For a network of 40 binary variables, the full joint distribution has 2⁴⁰ entries (> 1,000,000,000)
- If $|Par(x_i)| \le 5$, however, then the 40 (conditional) probability tables each have ≤ 32 entries, so the total number of parameters $\le 1,280$
- Largest medical BN I know (Pathfinder) had 109 variables! 2¹⁰⁹ ≈ 10³⁶



How Not to Build BN's

 With the wrong ordering of nodes, the network becomes more complicated, and requires more (and more difficult) conditional probability assessments



Simplifying Conditional Probability Tables

- Do we know any structure in the way that Par(x) "cause" x?
- If each destroyer can sink the ship with probability $P(s|d_i)$, what is the probability that the ship will sink if it's attacked by both? $(1 - P(s|d_1, d_2)) = (1 - P(s|d_1))(1 - P(s|d_2)) (1 - l)$
- For |Par(x)| = n, this requires O(n) parameters, not $O(k^n)$

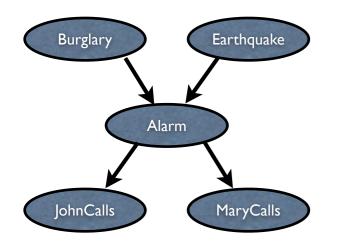
Image by MIT OpenCourseWare.

Photo by Konabish on Flickr.

Image by MIT OpenCourseWare.

Inference

- Recall the two basic inference problems: Belief propagation & MAP explanation
 - Trivially, we can enumerate all "matching" rows of the joint probability distribution
 - For *poly-trees* (not even <u>undirected</u> loops—i.e., only one connection between any pair of nodes; like our Burglary example), there are efficient linear algorithms, similar to constraint propagation
 - For arbitrary BN's, all inference is NP-hard!
 - Exact solutions
 - Approximation



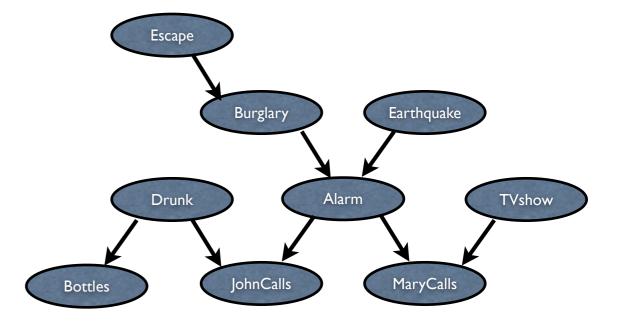
Exact Solution of BN's (Burglary example)

 $P(b|j,m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$ = $\alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e)P(j|a)P(m|a)$ $P(\mathbf{B}|j,m) = \alpha \{0.00059224, 0.0014919\} \approx \{0.28, 0.72\}$

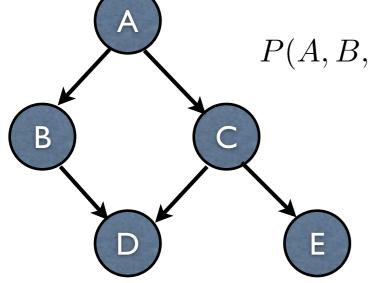
- Notes:
 - Sum over all "don't care" variables
 - Factor common terms out of summation
 - Calculation becomes a sum of products of sums of products ...

Poly-trees are easy

- Singly-connected structures allow propagation of observations via single paths
- "Down" is just use of conditional probability
- "Up" is just Bayes rule
- Formulated as message propagation rules
- Linear time (network diameter)
- Fails on general networks!



Exact Solution of BN's (non-poly-trees)



P(A, B, C, D, E) = P(A)P(B|A)P(C|A)P(D|B, C)P(E|C)

- What is the probability of a specific state, say A=t, B=f, C=t, D=t, E=f?
 p(a, ¬b, c, d, ¬e) = p(a), p(¬b|a)p(c, a)p(d|¬b, c)p(¬e|c)
- What is the probability that E=t given B=t? p(e|b) = p(e,b)/p(b)
- Consider the term P(e,b)

$$P(e,b) = \sum_{A,C,D} P(A,b,C,D,e)$$

=
$$\sum_{A,C,D} P(A)P(b|A)P(C|A)P(D|b,C)P(e|C)$$

$$= \sum_{C} P(e|C) \left(\sum_{A} P(A) P(C|A) P(b|A) \right) \left(\sum_{D} P(D|b,C) \right)$$

Alas, optimal factoring is NP-hard

I2 instead of 32 multiplications (even in this small example)

Other Exact Methods

- Join-tree: Merge variables into (small!) sets of variables to make graph into a poly-tree. Most commonly-used; aka Clustering, Junction-tree, Potential)
- Cutset-conditioning: Instantiate a (small!) set of variables, then solve each residual problem, and add solutions weighted by probabilities of the instantiated variables having those values
- ...
- All these methods are essentially equivalent; with some timespace tradeoffs.

Approximate Inference in BN's

- Direct Sampling—samples joint distribution
- Rejection Sampling—computes P(X|e), uses ancestor evidence nodes in sampling
- Likelihood Weighting—like Rejection Sampling, but weights by probability of descendant evidence nodes
- Markov chain Monte Carlo
 - Gibbs and other similar sampling methods

Direct Sampling

function Prior-Sample(bn) returns an event sampled from bn inputs: bn, a Bayes net specifying the joint distribution $\mathbf{P}(X_1, ..., X_n)$ x := an event with *n* elements for i = I to *n* do x_i := a random sample from P(X_i|Par(X_i)) return x

$$\lim_{n \to \infty} \frac{N_{PS}(x_1, \dots, x_n)}{N} = P(x_1, \dots, x_n) \qquad P(x_1, \dots, x_m) \approx \frac{N_{PS}(x_1, \dots, x_m)}{N}$$

- From a large number of samples, we can estimate all joint probabilities
 - The probability of an event is the fraction of all complete events generated by PS that match the partially specified event
 - hence we can compute all conditionals, etc.

Rejection Sampling

function Rejection-Sample(X, e, bn, N) returns an estimate of P(X|e) inputs: bn, a Bayes net X, the query variable e, evidence specified as an event N, the number of samples to be generated local: K, a vector of counts over values of X, initially 0

```
for j = I to N do
    y := PriorSample(bn)
    if y is consistent with e then
        K[v] := K[v]+I where v is the value of X in y
return Normalize(K[X])
```

- Uses PriorSample to estimate the proportion of times each value of X appears in samples that are consistent with e
- But, most samples may be irrelevant to a specific query, so this is quite inefficient

Likelihood Weighting

- In trying to compute P(X|e), where e is the evidence (variables with known, observed values),
 - Sample only the variables other than those in **e**
 - Weight each sample by how well it predicts **e**

$$S_{WS}(\boldsymbol{z}, \boldsymbol{e}) w(\boldsymbol{z}, \boldsymbol{e}) = \prod_{i=1}^{l} P(z_i | Par(Z_i)) \prod_{i=1}^{m} P(e_i | Par(E_i))$$
$$= P(\boldsymbol{z}, \boldsymbol{e})$$

Likelihood Weighting

$$S_{WS}(\boldsymbol{z}, \boldsymbol{e}) w(\boldsymbol{z}, \boldsymbol{e}) = \prod_{i=1}^{l} P(z_i | Par(Z_i)) \prod_{i=1}^{m} P(e_i | Par(E_i))$$
$$= P(\boldsymbol{z}, \boldsymbol{e})$$

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e) inputs: bn, a Bayes net

X, the query variable

e, evidence specified as an event

N, the number of samples to be generated

```
local:W, a vector of weighted counts over values of X, initially 0
```

for j = I to N do

```
y,w := WeightedSample(bn,e)
```

if \mathbf{y} is consistent with e then

```
W[v] := W[v] + w where v is the value of X in y
```

```
return Normalize(W[X])
```

```
function Weighted-Sample(bn,e) returns an event and a weight

x := an event with n elements; w := 1

for i = 1 to n do

if X_i has a value x_i in e

then w := w * P(X_i = x_i | Par(X_i))

else x_i := a random sample from P(X_i | Par(X_i))

return x,w
```

Markov chain Monte Carlo

function MCMC(X, e, bn, N) returns an estimate of P(X|e)

local: K[X], a vector of counts over values of X, initially 0

Z, the non-evidence variables in bn (includes X)

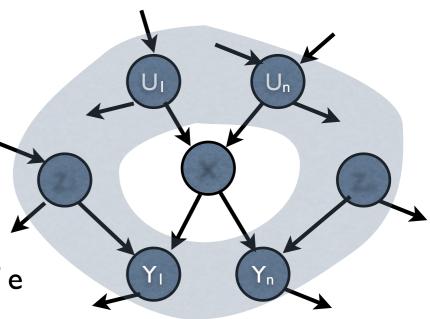
 \mathbf{x} , the current state of the network, initially a copy of e initialize \mathbf{x} with random values for the vars in Z

for j = I to N do

for each Zi in Z do

sample the value of Zi in x from P(Zi|mb(Zi)), given the values of mb(Zi) in x
K[v] := K[v]+I where v is the value of X in x
return Normalize(K[X])

- Wander incrementally from the last state sampled, instead of regenerating a completely new sample
- For every unobserved variable, choose a new value according to its probability given the values of vars in it Markov blanket (remember, it's independent of all other vars)
- After each change, tally the sample for its value of X; this will only change sometimes
- Problem: "narrow passages"



Most Probable Explanation

- So far, we have been solving for P(X|e), which yields a distribution over all possible values of the x's
- What it we want the *best explanation* of a set of evidence, i.e., the highest-probability set of values for the x's, given e?
- Just *maximize* over the "don't care" variables rather than summing
- This is not necessarily the same as just choosing the value of each x with the highest probability

Rules and Probabilities

- Many have wanted to put a probability on assertions and on rules, and compute with likelihoods
- E.g., Mycin's certainty factor framework
 - A (p=.3) & B (p=.7) ==p=.8==> C (p=?)
- Problems:
 - How to combine uncertainties of preconditions and of rule
 - How to combine evidence from multiple rules
- Theorem: There is NO such algebra that works when rules are considered independently.
- Need BN for a consistent model of probabilistic inference

MIT OpenCourseWare http://ocw.mit.edu

HST.950J / 6.872 Biomedical Computing Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.