
Bayes Networks

6.872/HST.950

What Probabilistic Models

Should We Use?

•	 Full joint distribution

•	 Completely expressive

•	 Hugely data-hungry

•	 Exponential computational complexity

•	 Naive Bayes (full conditional independence)

•	 Relatively concise

•	 Need data ~ (#hypotheses) × (#features) × (#feature-vals)

•	 Fast ~ (#features)

•	 Cannot express dependencies among features or among
hypotheses

•	 Cannot consider possibility of multiple hypotheses co
-
occurring

Bayesian Networks

(aka Belief Networks)

•	 Graphical representation of dependencies among a set of random
variables

•	 Nodes: variables

•	 Directed links to a node from its parents: direct probabilistic
dependencies

•	 Each Xi has a conditional probability distribution,
P(Xi|Parents(Xi)), showing the effects of the parents on the
node.

•	 The graph is directed (DAG); hence, no cycles.

•	 This is a language that can express dependencies between Naive
Bayes and the full joint distribution, more concisely

• Given some new evidence, how does this affect the probability

of some other node(s)? P(X|E) —belief propagation/updating

•	 Given some evidence, what are the most likely values of other
variables? —MAP explanation

Burglary Network

(due to J. Pearl)

Alarm

Burglary Earthquake

JohnCalls MaryCalls

Burglary Network

(due to J. Pearl)

Alarm

Burglary Earthquake

JohnCalls MaryCalls

P(B)

0.001

P(E)

0.002

B E P(A|B,E)

t t 0.95

t f 0.94

f t 0.29

f f 0.001

A P(M|A)

t 0.70

f 0.01

A P(J|A)

t 0.90

f 0.05

If everything depends on everything

Alarm

Burglary Earthquake

JohnCalls MaryCalls
2423

22

2021

• This model requires just as many parameters as the full joint
distribution!

Computing the Joint Distribution from a

Bayes Network

•	 As usual, we abuse notation:

•

•	 E.g., what’s the probability that an alarm has sounded, there was
neither an earthquake nor a burglary, and both John and Mary
called?

Requirements for Constructing a BN
• Recall that the definition of the conditional probability was

• and thus we get the chain rule,

• Generalizing to n variables,

• and repeatedly applying this idea,

• This “works” just in case we can define a partial order so that

Topological Interpretations

X

Y1 Yn

UnU1

Z1 Zn

A node, X, is conditionally independent of
its non-descendants, Zi, given its parents, Ui.

X

Y1 Yn

UnU1

Z1 Zn

A node, X, is conditionally independent of all other
nodes in the network given its Markov blanket:
its parents, Ui, children,Yi, and children’s parents,
Zi.

BN’s can be Compact

•	 For a network of 40 binary variables, the full joint distribution has
240 entries (> 1,000,000,000,000)

•	 If |Par(xi)| ≤ 5, however, then the 40 (conditional) probability
tables each have ≤ 32 entries, so the total number of parameters
≤ 1,280

•	 Largest medical BN I know (Pathfinder) had 109 variables! 2109 ≈
1036

How Not to Build BN’s

Alarm

Burglary Earthquake

JohnCalls MaryCalls

•	 With the wrong ordering of nodes, the network becomes more
complicated, and requires more (and more difficult) conditional
probability assessments

Alarm

Burglary Earthquake

JohnCalls MaryCalls

AlarmBurglary

Earthquake

JohnCalls MaryCalls

Order: M, J,A, B, E	 Order: M, J, E, B,A

Simplifying Conditional Probability Tables

•	 Do we know any structure in the way that Par(x) “cause” x?

•	 If each destroyer can sink the ship with probability P(s|di), what is
the probability that the ship will sink if it’s attacked by both?

• For |Par(x)| = n, this requires O(n) parameters, not O(kn)

Photo by Konabish on Flickr.
Image by MIT OpenCourseWare. Image by MIT OpenCourseWare.

Inference

•	 Recall the two basic inference problems: Belief propagation &
MAP explanation

•	 Trivially, we can enumerate all “matching” rows of the joint
probability distribution

•	 For poly-trees (not even undirected loops—i.e., only one
connection between any pair of nodes; like our Burglary
example), there are efficient linear algorithms, similar to
constraint propagation

•	 For arbitrary BN’s, all inference is NP-hard!

•	 Exact solutions

•	 Approximation

Alarm

Burglary Earthquake

JohnCalls MaryCalls

Exact Solution of BN’s

(Burglary example)

• Notes:

• Sum over all “don’t care” variables

• Factor common terms out of summation

• Calculation becomes a sum of products of sums of products ...

Poly-trees are easy

•	 Singly-connected structures
allow propagation of
observations via single paths

•	 “Down” is just use of
conditional probability

•	 “Up” is just Bayes rule

• Formulated as message

propagation rules

•	 Linear time (network
diameter)

•	 Fails on general networks!

Alarm

Burglary Earthquake

JohnCalls MaryCalls

TVshow Drunk

Bottles

Escape

Exact Solution of BN’s

(non-poly-trees)

• What is the probability of a specific state, say
A=t, B=f, C=t, D=t, E=f?

• What is the probability that E=t given B=t?

A

B

D

C

E

• Consider the term P(e,b)

Alas, optimal
factoring is NP-hard • 12 instead of 32 multiplications (even in this

small example)

Other Exact Methods

A

B

D

C

E

A

D

B,C

E

•	 Join-tree: Merge variables into (small!) sets of variables to make
graph into a poly-tree. Most commonly-used; aka Clustering,
Junction-tree, Potential)

•	 Cutset-conditioning: Instantiate a (small!) set of variables, then solve
each residual problem, and add solutions weighted by
probabilities of the instantiated variables having those values
...•

•	 All these methods are essentially equivalent; with some time-
space tradeoffs.

Approximate Inference in BN’s

•	 Direct Sampling—samples joint distribution

•	 Rejection Sampling—computes P(X|e), uses ancestor evidence
nodes in sampling

•	 Likelihood Weighting—like Rejection Sampling, but weights by
probability of descendant evidence nodes

•	 Markov chain Monte Carlo

•	 Gibbs and other similar sampling methods

Direct Sampling

function Prior-Sample(bn) returns an event sampled from bn
 inputs: bn, a Bayes net specifying the joint distribution P(X1, ... Xn)
 x := an event with n elements
 for i = 1 to n do

 xi := a random sample from P(Xi|Par(Xi))

 return x

•	 From a large number of samples, we can estimate all joint
probabilities

•	 The probability of an event is the fraction of all complete
events generated by PS that match the partially specified event

•	 hence we can compute all conditionals, etc.

Rejection Sampling

function Rejection-Sample(X, e, bn, N) returns an estimate of P(X|e)
 inputs: bn, a Bayes net

 X, the query variable
 e, evidence specified as an event
 N, the number of samples to be generated

local: K, a vector of counts over values of X, initially 0

 for j = 1 to N do
y := PriorSample(bn)
 if y	 is consistent with e then

 K[v] := K[v]+1 where v is the value of X in y
 return Normalize(K[X])

•	 Uses PriorSample to estimate the proportion of times each value
of X appears in samples that are consistent with e

•	 But, most samples may be irrelevant to a specific query, so this is
quite inefficient

Likelihood Weighting

•	 In trying to compute P(X|e), where e is the evidence (variables
with known, observed values),

•	 Sample only the variables other than those in e

•	 Weight each sample by how well it predicts e

l	 m

SWS(z, e)w(z, e) =
∏

P (zi|Par(Zi))
∏

P (ei|Par(Ei))
i=1	 i=1

=	 P (z, e)

l mLikelihood
SWS(z, e)w(z, e) =

∏
P (zi Par(Zi))

∏
P (ei Par(Ei))

i=1 i=1Weighting
= P (z, e)

| |

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e)

 inputs: bn, a Bayes net

 X, the query variable
 e, evidence specified as an event
 N, the number of samples to be generated

local:W, a vector of weighted counts over values of X, initially 0
 for j = 1 to N do

y,w := WeightedSample(bn,e)
 if y is consistent with e then

W[v] := W[v]+w where v is the value of X in y
 return Normalize(W[X])

function Weighted-Sample(bn,e) returns an event and a weight
 x := an event with n elements; w := 1
 for i = 1 to n do

 if Xi has a value xi in e
 then w := w * P(Xi = xi | Par(Xi))
 else xi := a random sample from P(Xi | Par(Xi))

 return x,w

function MCMC(X, e, bn, N) returns an estimate of P(X|e) Z1
X Zn

local: K[X], a vector of counts over values of X, initially 0

UU1	 n

x, the current state of the network, initially a copy of e	 Y1 Yn

Markov chain Monte Carlo

Z, the non-evidence variables in bn (includes X)

initialize x with random values for the vars in Z
 for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi|mb(Zi)), given the values of mb(Zi) in x
K[v] := K[v]+1 where v is the value of X in x

return Normalize(K[X])

•	 Wander incrementally from the last state sampled, instead of re-
generating a completely new sample

•	 For every unobserved variable, choose a new value according to
its probability given the values of vars in it Markov blanket
(remember, it’s independent of all other vars)

•	 After each change, tally the sample for its value of X; this will only
change sometimes

•	 Problem: “narrow passages”

Most Probable Explanation

•	 So far, we have been solving for P(X|e), which yields a distribution
over all possible values of the x’s

•	 What it we want the best explanation of a set of evidence, i.e., the
highest-probability set of values for the x’s, given e?

•	 Just maximize over the “don’t care” variables rather than summing

•	 This is not necessarily the same as just choosing the value of each
x with the highest probability

Rules and Probabilities

•	 Many have wanted to put a probability on assertions and on
rules, and compute with likelihoods

•	 E.g., Mycin’s certainty factor framework

•	 A (p=.3) & B (p=.7) ==p=.8==> C (p=?)

•	 Problems:

•	 How to combine uncertainties of preconditions and of rule

•	 How to combine evidence from multiple rules

•	 Theorem:There is NO such algebra that works when rules are
considered independently.

•	 Need BN for a consistent model of probabilistic inference

MIT OpenCourseWare
http://ocw.mit.edu

HST.950J / 6.872 Biomedical Computing
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

