Exploring MIMIC to learn from practice variation

Leo Anthony Celi MD, MS, MPH Beth Israel Deaconess Medical Center Harvard-MIT Health Sciences & Technology Division

Collaborative Ecosystem

- Beth Israel Deaconess Medical Center
 - Department of Medicine
 - Surgical ICU
 - Division of Cardiothoracic Anesthesia
 - Division of Dermatology
 - Department of Pharmacy
 - Division of Infectious Disease

Collaborative Ecosystem

Various logos have been removed due to copyright restrictions, including Mount Sinai School of Medicine, Escuela de Ingeniera de Antioquia, Mount Auburn Hospital, University of Oxford, NHS, MIT Portugal, among others.

Goals

- Present an overview of clinical research in progress
- Provide a unifying theme as regards the motivation behind the projects
- Introduce a vision of an empiric data-driven day-to-day practice

Evidence-Based Medicine

- Multi-center PRCTs and systematic reviews are gold standard
- PRCTs provide aggregated outcomes difficult to apply to individual patients
- Benefits may not translate into the real world – efficacy vs. effectiveness
- Errors and biases abound: 41% of the most cited original clinical research later refuted (loannidis, JAMA 2005)

Evidence-Based Medicine

- 2007 analysis of >1000 Cochrane systematic reviews
 - 49%: current evidence does not support either benefit or harm
 - 96%: additional research is recommended
- Most of what clinicians do has never been formally put to the test

Evidence-Based Medicine

- Large-scale evidence impossible to obtain for the millions of questions posed in day-to-day practice
- Is there a role for highly granular clinical databases such as MIMIC?

Collective Experience

- Aggregation of knowledge extractable from actual patient care of numerous clinicians
- Capture clinician heuristics mathematically : predicting fluid requirement (Celi *et al., Crit Care* 2008)
- Build patient subset-specific models: mortality prediction (Celi *et al., J Healthcare Eng* 2011)
- Examine areas with significant care variability

Practice Variation

- Variability in care not explained by patient or contextual factors
- Up to 85% variation in care (Millenson, *Health Aff* 1997)
 - Provider training
 - Provider knowledge base and experience
 - Local culture
- Treatment variation: Does it translate to variation in clinical outcomes?

What Matters During a Hypotensive Event? Fluids, Vasopressors, or Both?

Kothari R, Lee J, Ladapo J, Celi LA

Practice Variation

- Hypotension in the ICU: assess fluid responsiveness and optimize cardiac preload, + vasopressors
- Variable opinion among clinicians as regards harm from excess fluid and risk of vasopressor use

Methods

- Definition of hypotensive episode
- Interventions: fluid rate, use of vasopressors
- Primary outcomes: Mortality
- Secondary outcomes
 - Duration of hypotensive episode
 - ICU length-of -stay
 - Rise in creatinine within 3 days after the hypotensive event

Methods

- Control variables or confounders:
 - SAPS
 - Average MAP 3 hours prior to the hypotensive event
 - Minimum MAP during the hypotensive event
 - Average MAP during the hypotensive event
- Multivariate regression analysis
- Propensity score analysis: pressors vs. mortality

Table 1. Interventions given during HE according to ICU type

Interventions Given During HE According to ICU Type					
	MICU	SICU	CCU	Total	
Fluids only	69 (26%)	115 (31%)	25 (18%)	209 (27%)	
Pressors only	147 (54%)	171 (46%)	82 (61%)	400 (51%)	
Fluids & Pressors	54 (20%)	87 (23%)	28 (21%)	169 (22%)	
Total	270	373	135	778	

Image by MIT OpenCourseWare. Adapted from upcoming publication by Leo Anthony Celi.

Table 2. Type of vasopressor used according to ICU type

Type of Vasopressor Used According to ICU Type					
	MICU	SICU	CCU	Total	
Dobutamine	5 (2%)	4 (2%)	8 (7%)	17 (3%)	
Dopamine	50 (25%)	31 (12%)	52 (47%)	133 (23%)	
Epinephrine	2 (1%)	2 (1%)	4 (4%)	8 (1%)	
Norepinephrine	113 (56%)	133 (52%)	47 (43%)	293 (51%)	
Phenylephrine	69 (34%)	120 (47%)	30 (27%)	219 (38%)	
Vasopressin	12 (6%)	9 (3%)	10 (9%)	31 (5%)	
Total patients	201	258	110	569	

Image by MIT OpenCourseWare. Adapted from upcoming publication by Leo Anthony Celi.

Figure 1. Fluid rate during hypotensive event

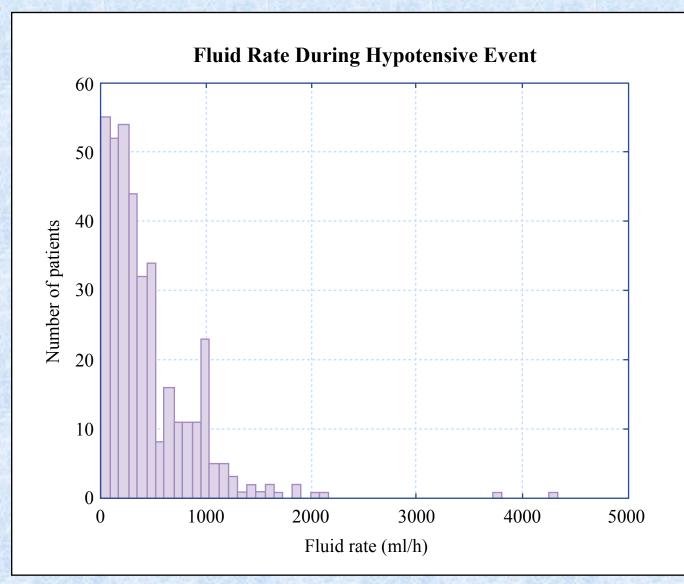


Image by MIT OpenCourseWare. Adapted from upcoming publication by Leo Anthony Celi.

Table 3. Multivariate analysis for HE duration (N=730, Hosmer-Lemeshow p=0.906)

	Odds Ratio	95% CI	P Value
Fluid rate < 500 ml/hr but > 250 ml/hr	1.261	0.803-1.981	0.314
Fluid rate > 500 ml/hr	0.876	0.562-1.366	0.560
Vasopressor use	0.444	0.818-2.532	< 10 ⁻⁵
Average MAP prior to HE	0.978	0.310-0.635	0.002
SAPS	1.018	0.965-0.992	0.214
SICU (vs. MICU)	0.600	0.428-0.842	0.003
CCU (vs. MICU)	0.686	0.442-1.065	0.093

Table 4. Multivariate analysis for hospital mortality (N=730, Hosmer-Lemeshow p=0.678)

	Odds Ratio	95% CI	P Value
Fluid rate < 500 ml/hr but > 250 ml/hr	1.057	0.666-1.679	0.813
Fluid rate > 500 ml/hr	0.647	0.408-1.028	0.065
Vasopressor use	1.934	1.340-2.791	< 10 ⁻³
Average MAP prior to HE	0.985	0.971-0.999	0.03
Average MAP during HE	1.005	0.973-1.038	0.768
Minimum MAP during HE	0.997	0.970-1.024	0.821
SAPS	1.121	1.086-1.158	< 10 ⁻¹¹
SICU (vs. MICU)	0.670	0.473-0.949	0.024
CCU (vs. MICU)	0.636	0.403-1.005	0.052

Table 5. Propensity score model (N=730, Hosmer-Lemeshow p=0.845)

	Odds Ratio	95% CI	P Value
Fluid rate < 500 ml/hr but > 250 ml/hr	0.217	0.139-0.338	< 10 ⁻¹⁰
Fluid rate > 500 ml/hr	0.333	0.211-0.526	< 10 ⁻⁵
Average MAP prior to HE	1.011	0.995-1.027	0.166
SAPS	1.050	1.015-1.086	<0.005
SICU (vs. MICU)	0.750	0.511-1.100	0.141
CCU (vs. MICU)	1.375	0.789-2.394	0.261

Figure 3. Calibration of the propensity score model

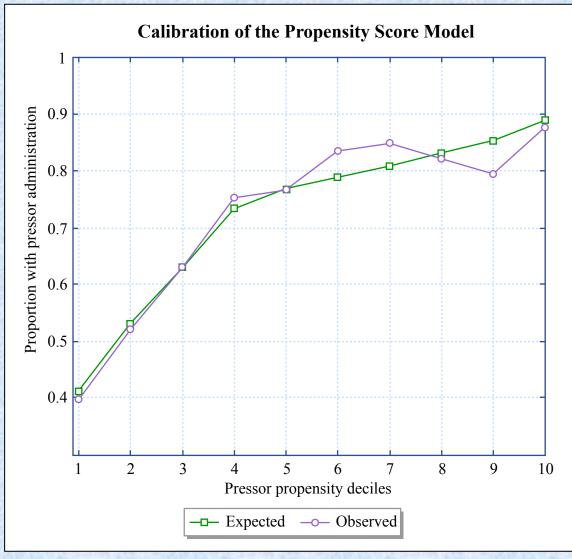


Image by MIT OpenCourseWare. Adapted from upcoming publication by Leo Anthony Celi.

Table 6. Vasopressor use vs. hospital mortality after adjustment for propensity score (N=730, Hosmer-Lemeshow p=0.345)

	Odds Ratio	95% CI	P Value
Vasopressor use	1.820	1.282-2.584	0.001
Propensity score	4.858	1.670-14.131	0.004

Table 4. Multivariate analysis for ICU length-of-stay among survivors (N=347, Hosmer-Lemeshow p=0.291)

	Odds Ratio	95% CI	P Value
Fluid rate < 500 ml/hr but > 250 ml/hr	1.000	0.432-2.314	1.000
Fluid rate > 500 ml/hr	2.957	0.836-10.453	0.092
Vasopressor use	1.490	0.743-2.987	0.262
Average MAP prior to HE	1.013	0.982-1.044	0.424
Average MAP during HE	0.953	0.888-1.023	0.185
Minimum MAP during HE	0.988	0.923-1.058	0.726
SAPS	1.125	1.043-1.213	0.002
SICU (vs. MICU)	1.082	0.517-2.263	0.835
CCU (vs. MICU)	1.95	0.673-5.651	0.218

Table 4. Multivariate analysis for creatinine rise (N=618, Hosmer-Lemeshow p=0.745)

	Odds Ratio	95% CI	P Value
Fluid rate < 500 ml/hr but > 250 ml/hr	0.734	0.455-1.185	0.206
Fluid rate > 500 ml/hr	0.744	0.457-1.210	0.233
Vasopressor use	1.060	0.725-1.550	0.763
Average MAP prior to HE	0.992	0.997-1.007	0.281
Average MAP during HE	0.984	0.951-1.019	0.365
Minimum MAP during HE	0.974	0.945-1.003	0.077
SAPS	1.030	0.998-1.064	0.068
SICU (vs. MICU)	0.870	0.606-1.251	0.453
CCU (vs. MICU)	1.072	0.667-1.724	0.773

Discussion

- Vasopressor use during a hypotensive event is an independent predictor of mortality
 - Multivariate logistic regression
 - Propensity score analysis
- Mean vasopressor load associated with increased risk of 28-day mortality (Dunser, Crit Care 2009)
- Side effects
 - impaired microcirculation
 - increased metabolic demands
 - altered immune response

Incorporating Dynamic Information during a Hypotensive Episode to Improve Mortality Prediction Mayaud L, Celi LA, Kothari R, Clifford G, Tarrasenko L, Annane D

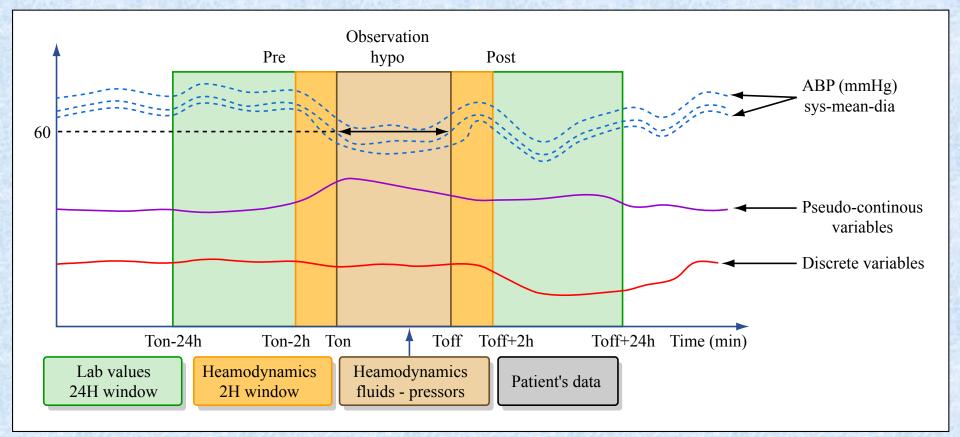
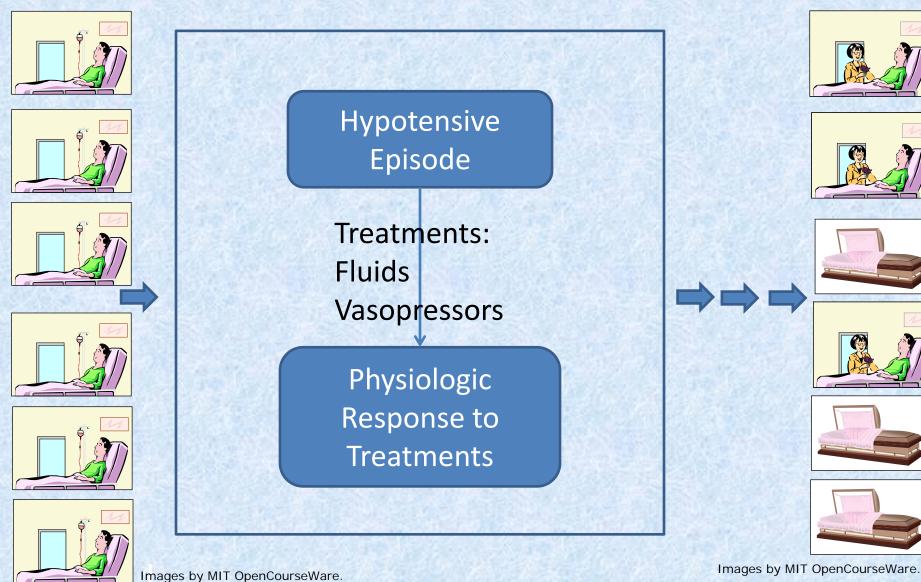



Image by MIT OpenCourseWare. Adapted from Mayaud, et al.

Outcome Prediction

Initial Presentation

Event -> Treatment -> Response

Transfusing the Non-Bleeding Patient Samani S, Samani Z, Malley B, Celi LA

- Compare survival curves of transfused and non-transfused non-bleeding patients with hemoglobin between 7 and 10 g/dL
- Control variables: age, severity score, comorbidities, hemoglobin
- Cox regression model to calculate hazards ratio
- Propensity score analysis and instrumental variable analysis to confirm findings

Impact of 24/7 Intensivist on Clinical Outcomes Celi LA, Stevens J, Lee J, Osorio J, Howell M

- Nocturnal intensivist program initiated in MICU in 2002, SICU in 2010
- Control for potential confounding by other ICU quality improvement projects by comparing adjusted clinical outcomes of MICU and SICU patients
- Perform analysis on patients admitted at night as day admissions may dilute treatment effect

Quantifying the Risk of Unnecessary Broad-Spectrum Antibiotics Snyder G, Pho M, Golik M, Celi LA

- Antibiotic use is the main driver of antimicrobial resistance in the hospital
- Vancomycin/Cefepime for every healthcare facility-associated fever & leukocytosis
- Streamlining rarely happens despite negative cultures
- Difficult to distinguish infectious vs. noninfectious SIRS

Predicting Whether a Laboratory Test will be Significantly Changed from the Previous Determination Cismondi F, Celi LA

- Frequency of laboratory testing very ad hoc
 - Hematocrits for GI bleed
 - Chem 7 for Hyperglycemic Hyperosmolar State, DKA
 - ABG for status asthmaticus
- Can we predict whether a test will give us additional information?
- Reduce iatrogenic anemia, false positives

Other Works in Progress

- Developing mortality prediction models for elderly patients undergoing open heart surgery
- Cost effectiveness of CABG vs. PCI among elderly patients
- Looking at coupling/uncoupling of physiologic variables using information transfer among different patient subsets
- Influence of MELD scores on Kaplan-Meier curves among patients with cirrhosis admitted to the ICU
- Impact of troponin leaks during critical illness on longterm survival
- Epidemiology of rash in the ICU
- Are there racial disparities in resource utilization at the end-of-life at BIDMC?

Conclusions

- Clinical databases such as MIMIC present an opportunity to study areas where practice variation exists
- Large-scale evidence impossible to obtain for the millions of questions posed in day-to-day practice - impractical, expensive, "unethical"
- Data mining might allow us to catch-up with a century of non-evidence-based medicine

The MIMIC Vision

Images by MIT OpenCourseWare.

Select patients similar in important features as regards a specific question, e.g. Will my patient benefit from blood transfusion?

ICU

Database

"Our vision is the creation of a learning system that aggregates and analyzes day-to-day experimentations, where new knowledge is constantly extracted and propagated, and where practice is driven by outcomes, and less so by heuristics and gut instinct."

HST.950J / 6.872 Biomedical Computing Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.