Introduction to Modeling

6.872/HST950

Why build Models?

- To predict (identify) something
 - Diagnosis
 - Best therapy
 - Prognosis
 - Cost
- To understand something
 - Structure of model *may* correspond to structure of reality

Where do models come from?

- Pure induction from data
 - Even so, need some "space" of models to explore
 - Maximum A-posteriori Probability (MAP) $P(h_i|d) = \alpha P(d|h_i)P(h_i)$
 - Maximum Likelihood (ML) $P(h_i|d) = \alpha P(d|h_i)$
 - Assumes uniform priors over all hypotheses in the space
- A-priori knowledge, expressed in
 - Structure of the space of models
 - $P(h_i)$
 - Adjustments to observed data

An Example (Russell & Norvig)

- Surprise Candy Corp. makes two flavors of candy: cherry and lime
- Both flavors come in the same opaque wrapper
- Candy is sold in large bags, which have one of the following distributions of flavors, but are visually indistinguishable:
 - h₁: 100% cherry
 - h₂: **75% cherry**, **25% lime**
 - h₃: 50% cherry, 50% lime
 - h₄: 25% cherry, 75% lime
 - h₅: 100% lime
- Relative prevalence of these types of bags is (.1, .2, .4, .2, .1)
- As we eat our way through a bag of candy, predict the flavor of the next piece; actually a probability distribution.

Bayesian Learning

- Calculate the probability of each hypothesis given the data $P(h_i|d) = \alpha P(d|h_i)P(h_i)$
- To predict the probability distribution over an unknown quantity, X, $P(X|d) = \sum_{i} P(X|d, h_i) P(h_i|d) = \sum_{i} P(X|h_i) P(h_i|d)$
- If the observations **d** are independent, then $P(\mathbf{d}|h_i) = \prod_j P(d_j|h_i)$
- E.g., suppose the first 10 candies we taste are all lime $P(d|h_3) = 0.5^{10} \approx 0.001$

h₁: 100% cherry h₂: 75% cherry, 25% lime h₃: 50% cherry, 50% lime h₄: 25% cherry, 75% lime h₅: 100% lime

Learning Hypotheses and Predicting from Them

• (a) probabilities of h_i after k lime candies; (b) prob. of next lime

Image by MIT OpenCourseWare.

- MAP prediction: predict just from most probable hypothesis
 - After 3 limes, h₅ is most probable, hence we predict lime
 - Even though, by (b), it's only 80% probable

Observations

- Bayesian approach asks for prior probabilities on hypotheses!
 - Natural way to encode bias against complex hypotheses: make their prior probability very low
- Choosing h_{MAP} to maximize $P(h_i|d) = \alpha P(d|h_i)P(h_i)$
 - is equivalent to minimizing $-\log P(\boldsymbol{d}|h_i) \log P(h_i)$
 - but as we know that entropy is a measure of information, these two terms are
 - # of bits needed to describe the data given hypothesis
 - # bits needed to specify the hypothesis
 - Thus, MAP learning chooses the hypothesis that maximizes compression of the data; Minimum Description Length principle
 - Regularization is similar to 2nd term—penalty for complexity
- Assuming uniform priors on hypotheses makes MAP yield h_{ML} , the maximum likelihood hypothesis, which maximizes $P(h_i|d) = \alpha P(d|h_i)$

Learning More Complex Hypotheses

- Input:
 - Set of cases, each of which includes
 - numerous *features*: categorical labels, ordinals, continuous
 - these correspond to the independent variables
- Output:
 - For each case, a result, prediction, classification, etc., corresponding to the *dependent variable*
 - In regression problems, a continuous output
 - a designated feature the model tries to predict
 - In classification problems, a discrete output
 - the category to which the case is assigned
- Task: learn function *f*(input)=output
 - that minimizes some measure of error

Linear Regression

- General form of the function $y = f(x_1, x_2, \dots, x_n) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$
- For each case:

 $\hat{y}_i = f(x_{1,i}, x_{2,i}, \dots, x_{n,i}) = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_n x_{n,i}$

- Find β_j to minimize some function of $(y_i \hat{y}_i)$ over all y_i
 - e.g., mean squared error: $\frac{\sum_{i}^{\prime}}{\sum_{i}^{\prime}}$

$$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)}{n}$$

Logistic Regression

- E.g, how risk factors contribute to probability of death
- β_i are the log odds ratios $\log O(y_i|x_i)$

More sophisticated models

- Nearest Neighbor Methods
- Classification Trees
- Artificial Neural Nets
- Support Vector Machines
- Bayes Networks (much on this, later)
- Rough Sets, Fuzzy Sets, etc. (see 6.873/HST951 or other ML classes)

How?

- Given: pile of *training data*, all cases labeled with gold standard outcome
- Learn "best" model
- Gather new test data, also all labeled with outcomes
- Test performance of model on new test data
- Simple, no?

Simplest Example

Relationship between a diagnostic conclusion and a diagnostic test

	Test Positive	Test Negative	
Disease	True	False	TP+FN
Present	Positive	Negative	
Disease	False	True	FP+TN
Absent	Positive	Negative	
	TP+FP	FN+TN	

	Test Positive	Test Negative	
Disease	True	False	TP+FN
Present	Positive	Negative	
Disease	False	True	FP+TN
Absent	Positive	Negative	
	TP+FP	FN+TN	

Definitions

Sensitivity (true positive rate): TP/(TP+FN)

False negative rate: I-Sensitivity = FN/(TP+FN)

Specificity (true negative rate): TN/(FP+TN)

False positive rate: I-Specificity = FP/(FP+TN)

Positive Predictive Value (PPV): TP/(TP+FP)

Negative Predictive Value (NPV): TN/(FN+TN)

Need to explore many models

• Remember:

- training set => model
- model + test set => measure of performance
- But
 - How do we choose the best family of models?
 - How do we choose the important features?
 - Models may have structural parameters
 - Number of hidden units in ANN
 - Max number of parents in Bayes Net
- Parameters (like the betas in LR), and meta-parameters

The Lady Tasting Tea

- R.A. Fisher & the Lady
 - B. Muriel Bristol claimed she prefers tea added to milk rather than milk added to tea
 - Fisher was skeptical that she could distinguish
- Possible resolutions
 - Reason about the chemistry of tea and milk
 - Milk first: a little tea interacts with a lot of milk
 - Tea first: vice versa
 - Perform a "clinical trial"
 - Ask her to determine order for a series of test cups
 - Calculate probability that her answers could have occurred by chance guessing; if small, she "wins"
 - ... Fisher's Exact Test
 - Significance testing
 - Reject the *null hypothesis* (that it happened by chance) if its probability is < 0.1, 0.05, 0.01, 0.001, ..., 0.000001, ..., ????

How to deal with multiple testing

- Suppose Ms. Bristol had tried this test 100 times, and passed once. Would you be convinced of her ability to distinguish?
- Bonferroni correction: for n trials, insist on a p-value that is 1/n of what you would demand for a single trial

Cross-validation

- Any number of times
 - Train on some subset of the training data
 - Test on the remainder, called the validation set
- Choose best meta-parameters
- Train, with those meta-parameters, on all training data
- Test on Test data, once!

Aliferis lessons (part)

- Overfitting
 - bias, variance, noise
 - O = optimal possible model over all possible learners
 - L = best model learnable by this learner
 - A = actual model learned
 - Bias = O L (limitation of learning method or target model)
 - Variance = L A (error due to sampling of training cases)
 - Compare against learning from randomly permuted data
- Curse of dimensionality
 - Feature selection
 - Dimensionality reduction

Causality

- Suppes, 1950's
 - Statistical association
 - Temporal succession
 - No confounders (!)
 - hidden variables
- A node, X, is conditionally independent of all other nodes in the network given its Markov blanket: its parents, U_i, <u>children</u>, Y_i, and <u>children's parents</u>, <u>Z_i</u>.

Using MIMIC data to build predictive models

- Mortality
 - Comparison to SAPS II
 - Daily Acuity Scores
 - Real-time Acuity Scores
- Other outcomes
 - Good
 - Weaning from Ventilator
 - Weaning from Intra-Aortic Balloon Pump
 - Weaning from Vasopressors
 - Bad
 - Septic shock
 - Hypotension
 - Acute kidney injury

 Caleb Hug's 2009 PhD thesis: <u>http://dspace.mit.edu/handle/1721.1/46690</u>

Cleaning the data—half the research time

- Missing values
 - Some values are not measured for some clinical situations
 - Failures in data capture process
- Episodically measured variables
- Unclear/undefined clinical states
- Imprecise timing of meds, ...
- Partially measured i/o
- Proxies: e.g., which ICU \Rightarrow what disease
- Derived variables: integrals, slopes, ranges, frequencies, etc.
- Transformed variables: square root, log, etc.
- Select subset of data with enough data!

Descriptive look

Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient Episodes Using Real-time Mortality Models." *Massachusetts Institute of Technology*, 2009.

Outcomes

Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient Episodes Using Real-time Mortality Models." *Massachusetts Institute of Technology*, 2009.

SAPS II

Table 4.1: SAPS II Variables	
Variable	Max Points
Age	18
Heart rate	11
Systolic BP	13
Body temperature	3
PaO2:FiO2 (if ventilated or continuous	11
positive airway pressure)	
Urinary output	11
Serum urea nitrogen level	10
WBC count	12
Serum potassium	3
Serum sodium level	5
Serum bicarbonate level	6
Bilirubin level	9
Glasgow Coma Score ^{a}	26
Chronic diseases	17
Type of admission	8

^{*a*}If the patient is sedated, the estimated GCS prior to sedation

Training models — 5-fold cross validation

Number of Covariates

Many univariate analyses

Model 5.1 SDAS Model for Fold 2 with 30 Covariates				Mode	l 5.2 Final SI	DAS model						
Obs Max Deriv Mode	el L.R.	d.f.	Р	С	Dxv	Obs	Max Deriv M	odel L.R.	d.f.	Р	С	Dxy
20172 1e-09 5	5415.11	30	0	0.893	0.785	20130	3e-10	5619.28	35	0	0.898	0.797
Gamma Tau-a	R2	Brier	-			Gamma	Tau-a	R2	Brier			
0 787 0 176	0 439	0.076				0.798	0.177	0.456	0.074			
0.101 0.110	0.400	0.010							Q f	a F		
	Coof	C F	Wold 7	D		CCS ma	v sa		-0 0064668	5.E. 5.032e-04	Wald Z P	
	1 70F-	D.E.		P		TNR me	van i		-1 8734049	1 458e-01	-12.85 0.0000	
INK_mean_1	-1.7956	e+00 1.423e-01	-12.01	0.0000		pacemk	r max		-0.9337190	1.179e-01	-7.920.0000	
GCS_max_sq	-7.485e	e-03 6.000e-04	-12.47	0.0000		svCSRU	J_max		-0.9137522	1.250e-01	-7.31 0.0000	
OutputB_60_mean_sqrt	-6.561e	e-02 6.885e-03	-9.53	0.0000		RikerS	_ SAS_mean		-0.3430971	5.151e-02	-6.66 0.0000	
pacemkr_max	-1.084e	e+00 1.183e-01	-9.16	0.0000		Platel	ets_Slope_16	80_min	-5.8856843	8.839e-01	-6.66 0.0000	
svCSRU_max	-9.516e	e-01 1.208e-01	-7.88	0.0000		urineB	ByHr_mean_sqr	t	-0.0584113	9.453e-03	-6.18 0.0000	
GCSrdv_mean	-1.138e	e-01 1.528e-02	-7.45	0.0000		GCSrdv	_mean		-0.0902717	1.552e-02	-5.82 0.0000	
pressD01_mean_am	-2.774e	+00 3.893e-01	-7.13	0.0000		GCSrng	_min_am		-0.0812232	1.459e-02	-5.57 0.0000	
Platelets Slope 1680 min	-5.493e	e+00 8.615e-01	-6.38	0.0000		pressD	01_mean_am		-1.6132643	3.005e-01	-5.37 0.0000	
pressD01 sd sg	-5.085e	+00 8 678e-01	-5.86	0.0000		CV_HRr	ng_max		-0.0061979	1.216e-03	-5.10 0.0000	
sedatives mean so	-4 375e	$-01 \ 8 \ 455 - 02$	-5 17	0.0000		Insuli	.n_sd_sq		-2.1686950	4.372e-01	-4.96 0.0000	
Pol 24 more	-4 403	-05 1 2220-05	-3 69	0.0000		MotCar	put_max_la		-0.0890330	2.205e-02		
Dal24_max	-4.4936		-3.00	0.0002		WBC me	cinoma_min		0.147036	5 149e-03	2.85 0.0043	
	-3.2076	-03 1.0656-03	-3.02	0.0026		ATDS m	in		0.5954305	1.991e-01	2.99 0.0028	
Intercept	4.2926	e-01 4.085e-01	1.05	0.2934		Interc	ept		1.5314512	4.529e-01	3.38 0.0007	
Milrinone_perKg_min_sq	3.523e	e+00 1.113e+00	3.17	0.0015		MBPm.p	or_min_am		1.4601630	3.518e-01	4.15 0.0000	
LOSBal_max	2.247e	e-05 5.703e-06	3.94	0.0001		HemMal	.ig_min		0.6032027	1.212e-01	4.98 0.0000	
hrmVA_max	3.410e	e-01 6.767e-02	5.04	0.0000		RESP_m	lean_sq		0.0006615	1.324e-04	5.00 0.0000	
MBPm.pr_min_am	1.904e	e+00 3.711e-01	5.13	0.0000		$hrmVA_$	max		0.3520834	6.823e-02	5.16 0.0000	
Mg_min_sq	1.067e	e-01 1.798e-02	5.93	0.0000		Pa02to	FiO2_mean		0.2672376	4.336e-02	6.16 0.0000	
beta.Blocking_agent_mean_1	Lam 2.418e	e-01 3.955e-02	6.11	0.0000		Na_mea	in_am		0.0549066	8.506e-03	6.45 0.0000	
Na mean am	5.214e	e-02 8.415e-03	6.20	0.0000		Mg_min	_sq		0.1173220	1.815e-02	6.46 0.0000	
mechVent mean so	7.183e	-01 1 047e-01	6.86	0.0000		Dlatel	.dx_max		0.5742182	8.853e-02	6.49 0.0000	
BFSP mean sq	9 2266	-04 1 293 -04	7 13	0 0000		hospTi	me min sort		0 0057514	8 158 ₆ -04	7 05 0 0000	
Platalata maan j	2.2200	+01 2 5120+00	7 15	0.0000		dav mi	n sa		0.0170075	2.372e-03	7.17 0.0000	
Fiaterets_mean_i	2.5126	+01 3.51Ze+00	7.10	0.0000		jaundi	.ceSkin_mean_	la	0.1469141	2.045e-02	7.18 0.0000	
Lasix_max_lam	2.5506	e-01 3.457e-02	7.30	0.0000		CO2_me	an_i		19.3845272	2.682e+00	7.23 0.0000	
CU2_mean_1	2.0386	+01 2.741e+00	7.43	0.0000		Lasix_	max_lam		0.2523702	3.444e-02	7.33 0.0000	
jaundiceSkin_mean_la	1.523e	e-01 2.014e-02	7.56	0.0000		beta.B	locking_agen	t_mean_lam	n 0.2918077	3.923e-02	7.44 0.0000	
hospTime_min_sqrt	6.860e	e-03 7.939e-04	8.64	0.0000		Sympat	homimetic_ag	ent_min	0.8576883	9.254e-02	9.27 0.0000	
$pressorSum.std_mean_sqrt$	7.758e	e-01 7.225e-02	10.74	0.0000		SpO2.o	or30.t_mean_	sqrt	0.4059329	4.128e-02	9.83 0.0000	
SpO2.oor30.t_mean_sqrt	4.929e	e-01 4.095e-02	12.04	0.0000		BUNtoC	r_min_sqrt		0.2829088	2.348e-02	12.05 0.0000	
BUNtoCr_min_sqrt	2.867e	e-01 2.323e-02	12.34	0.0000		Age_mi	.n_sq		0.0002601	1.495e-05	17.40 0.0000	
Age_min_sq	2.2586	e-04 1.450e-05	15.57	0.0000	Figure by	H <u>ug, Ca</u>	ileb Wayne. "	Detecting I	Hazardous In	tensive Ca	re Patient	0000

Episodes Using Real-time Mortality Models." Massachusetts Institute of Technology, 2009.

Evaluating the models

0.0

0.0

0.2

0.4

Predicted Probability

Logistic calibration Nonparametric Grouped observat

0.6

0.8

1.0

Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient Episodes Using Real-time Mortality Models." *Massachusetts Institute of Technology*, 2009.

Selected features for each day of ICU stay

Figure by Hug, Caleb Wayne. "Detecting Hazardous Intensive Care Patient Episodes Using Real-time Mortality Models." *Massachusetts Institute of Technology*, 2009. MIT OpenCourseWare http://ocw.mit.edu

HST.950J / 6.872 Biomedical Computing Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.