Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

6.873/HST.951 Medical Decision Support Spring 2004

Evaluation

Lucila Ohno-Machado

Outline

Calibration and Discrimination

- AUCs
- H-L statistic

Strategies:

- Cross-validation
- Bootstrap
- Decomposition of error
 - Bias
 - Variance

Main Concepts

- Example of a Medical Classification System
- Discrimination
 - Discrimination: sensitivity, specificity, PPV, NPV, accuracy, ROC curves, areas, related concepts
- Calibration
 - Calibration curves
 - Hosmer and Lemeshow goodness-of-fit

Example I

Modeling the Risk of Major In-Hospital Complications Following Percutaneous Coronary Interventions

Frederic S. Resnic, Lucila Ohno-Machado, Gavin J. Blake, Jimmy Pavliska, Andrew Selwyn, Jeffrey J. Popma

- [Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention.
- Am J Cardiol. 2001 Jul 1;88(1):5-9.]

Dataset: Attributes Collected

Procedural History Presentation Angiographic **Operator/Lab** acute MI occluded number lesions annual volume age gender primary lesion type multivessel device experience diabetes (A, B1, B2, C)number stents daily volume rescue iddm CHF class graft lesion lab device stent types (8) history CABG angina class vessel treated closure device experience Baseline Cardiogenic ostial gp 2b3a unscheduled case shock creatinine antagonists CRI failed CABG dissection post **FSRD** rotablator hyperlipidemia atherectomy angiojet max pre stenosis max post stenosis

no reflow

Data Source: Medical Record

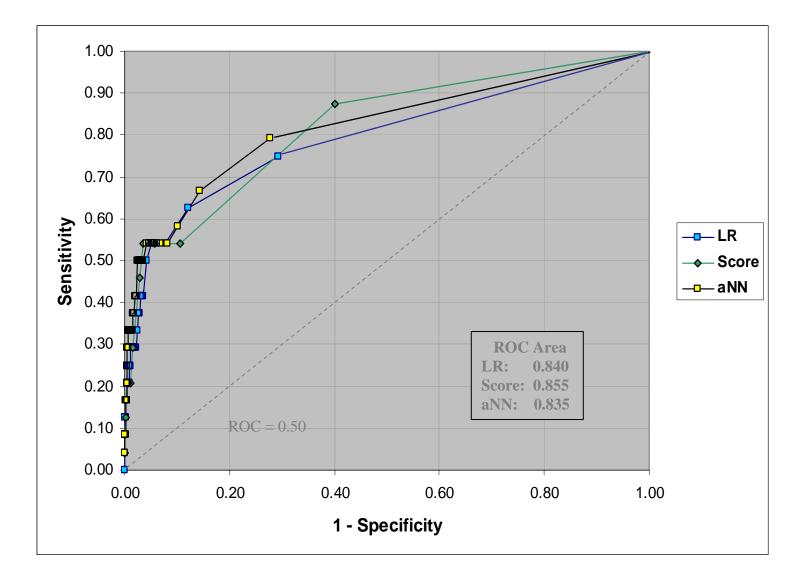
Clinician Derived Other

Study Population

D	Development Set 1/97-2/99		Validation Set 3/99-12/99		
Cases	2,804		1,	1,460	
Women	909	(32.4%)	433	(29.7%)	p=.066
Age > 74yrs	595	(21.2%)	308	(22.5%)	p=.340
Acute MI	250	(8.9%)	144	(9.9%)	p=.311
Primary	156	(5.6%)	95	(6.5%)	p=.214
Shock	62	(2.2%)	20	(1.4%)	p=.058
Class 3/4 CHF	176	(6.3%)	80	(5.5%)	p=.298
gp IIb/IIIa antagonist	1,005	(35.8%)	777	(53.2%)	p<.001
Death	67	(2.4%)	24	(1.6%)	p=.110
Death, MI, CABG (MACE) 177	(6.3%)	96	(6.6%)	p=.739

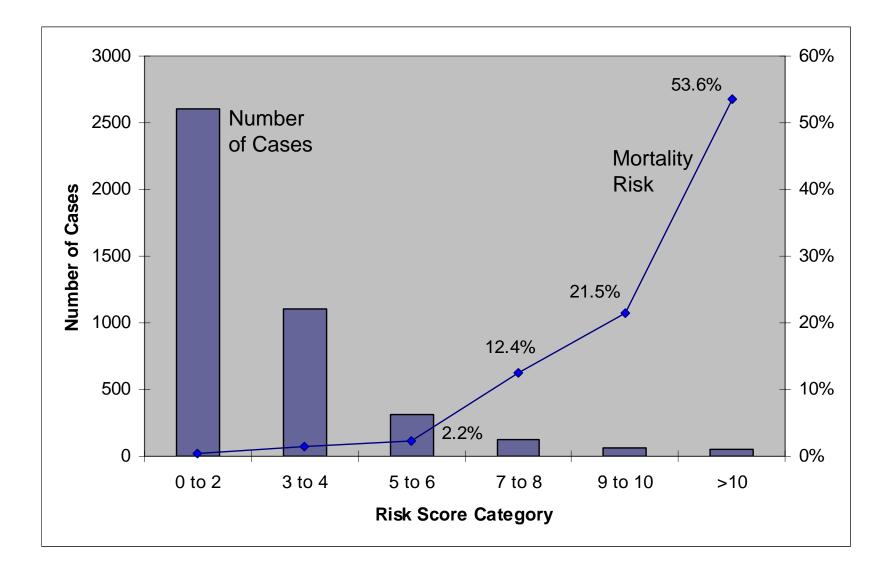
ROC Curves: Death Models

Validation Set: 1460 Cases



Risk Score of Death: BWH Experience

Unadjusted Overall Mortality Rate = 2.1%



Evaluation Indices

General indices

• Brier score (a.k.a. mean squared error)

e = estimate (e.g., 0.2)o = observation (0 or 1)n = number of cases

Discrimination Indices

Discrimination

- The system can "somehow" differentiate between cases in different categories
- Binary outcome is a special case:
 - diagnosis (differentiate sick and healthy individuals)
 - prognosis (differentiate poor and good outcomes)

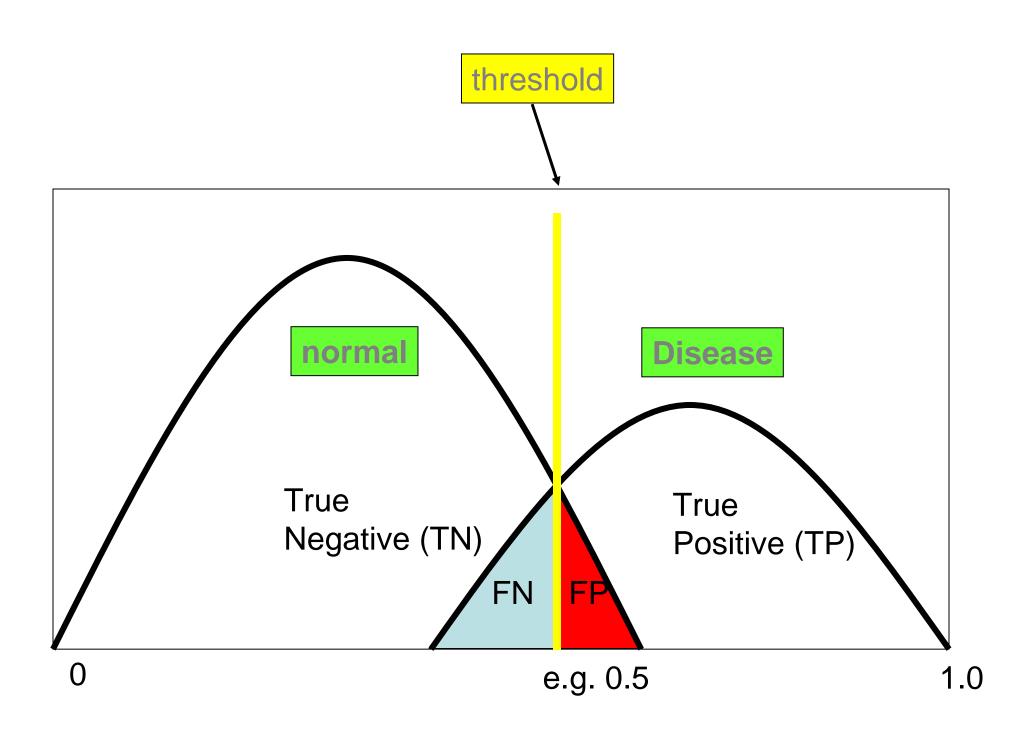
Discrimination of Binary Outcomes

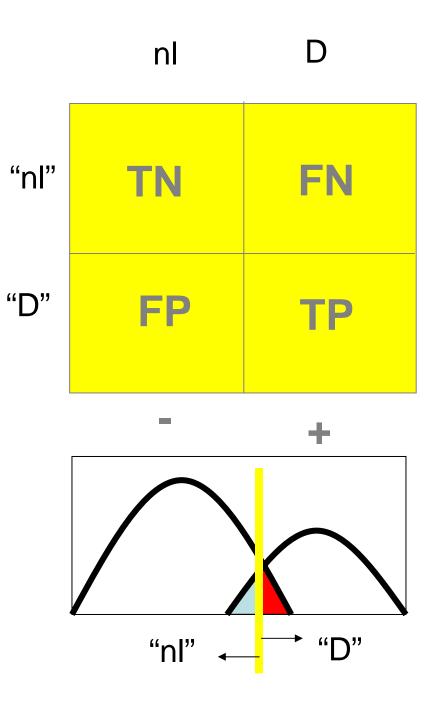
• **Real** outcome (true outcome, also known as "gold standard") is 0 or 1, estimated outcome is usually a number between 0 and 1 (e.g., 0.34)

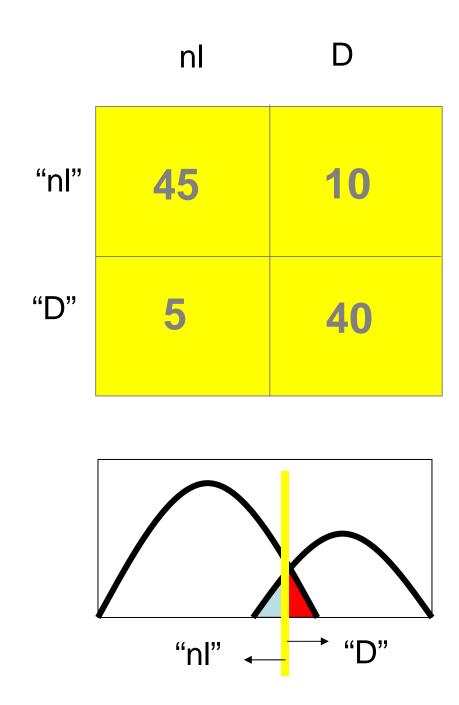
0.3	0
0.2	0
0.5	1
0.1	0

Estimate "True"

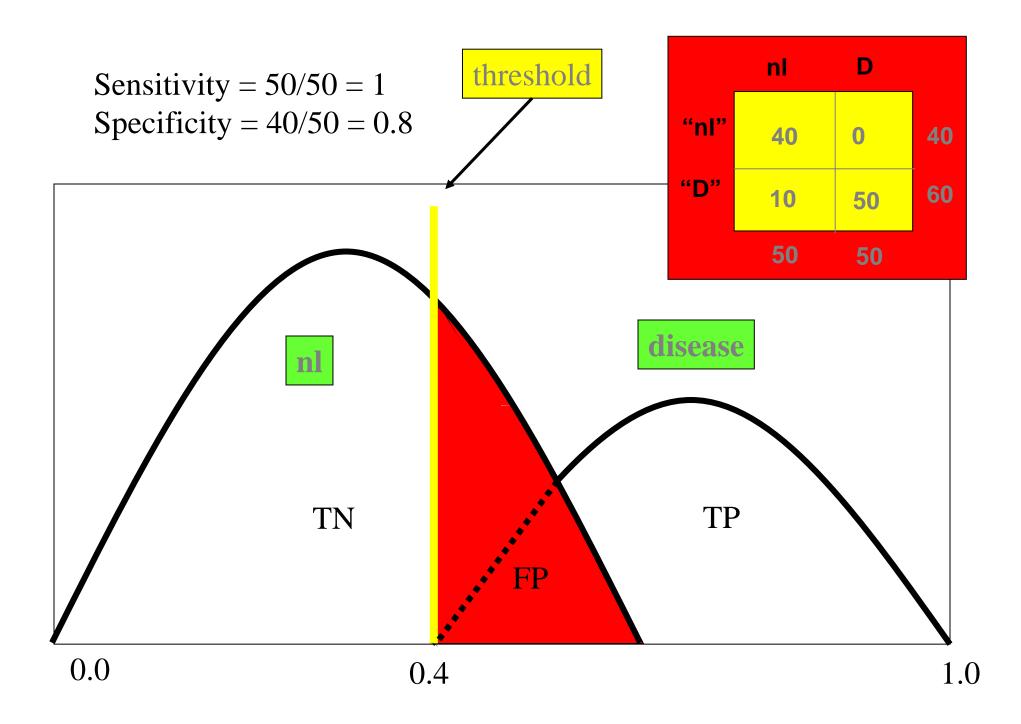
- In practice, classification into category 0 or 1 is based on Thresholded Results (e.g., if output or probability > 0.5 then consider "positive")
 - Threshold is arbitrary

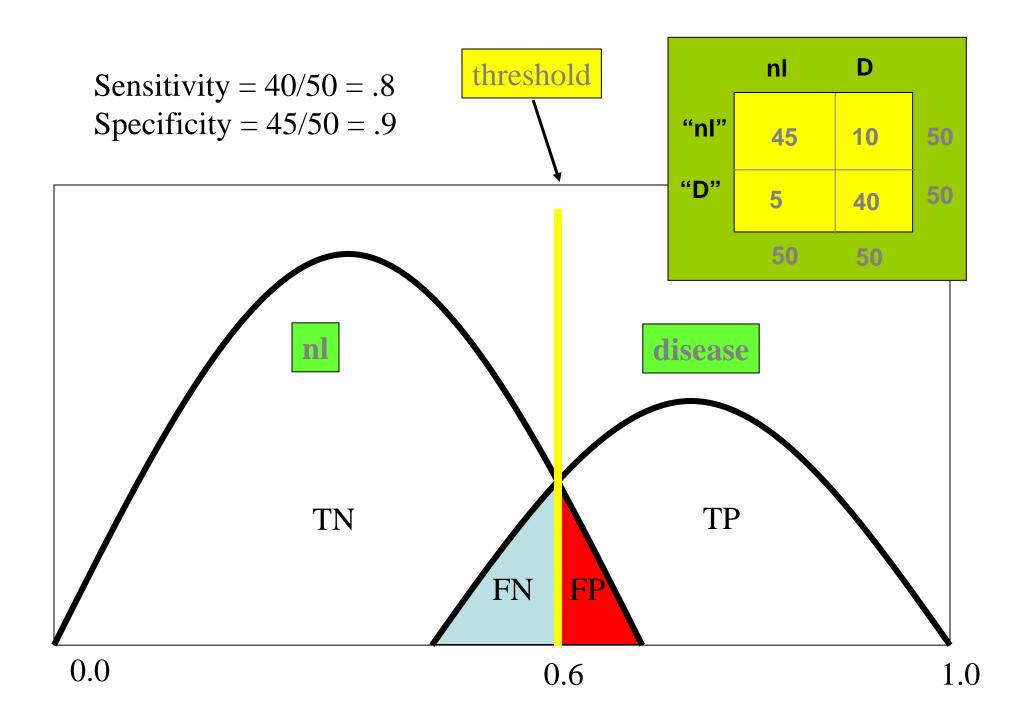


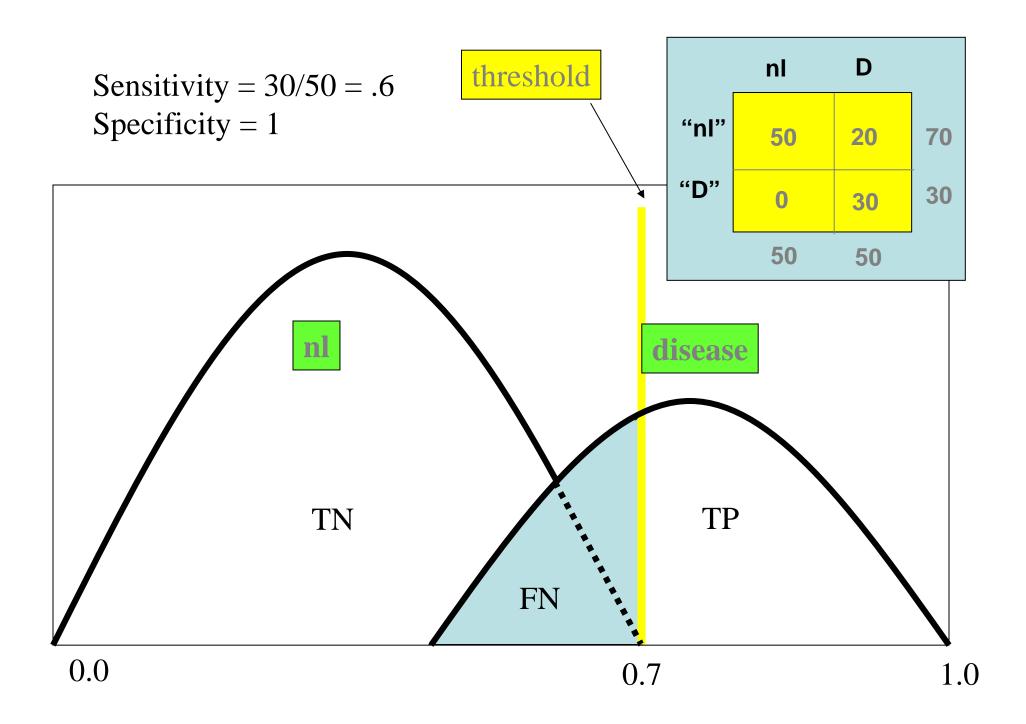


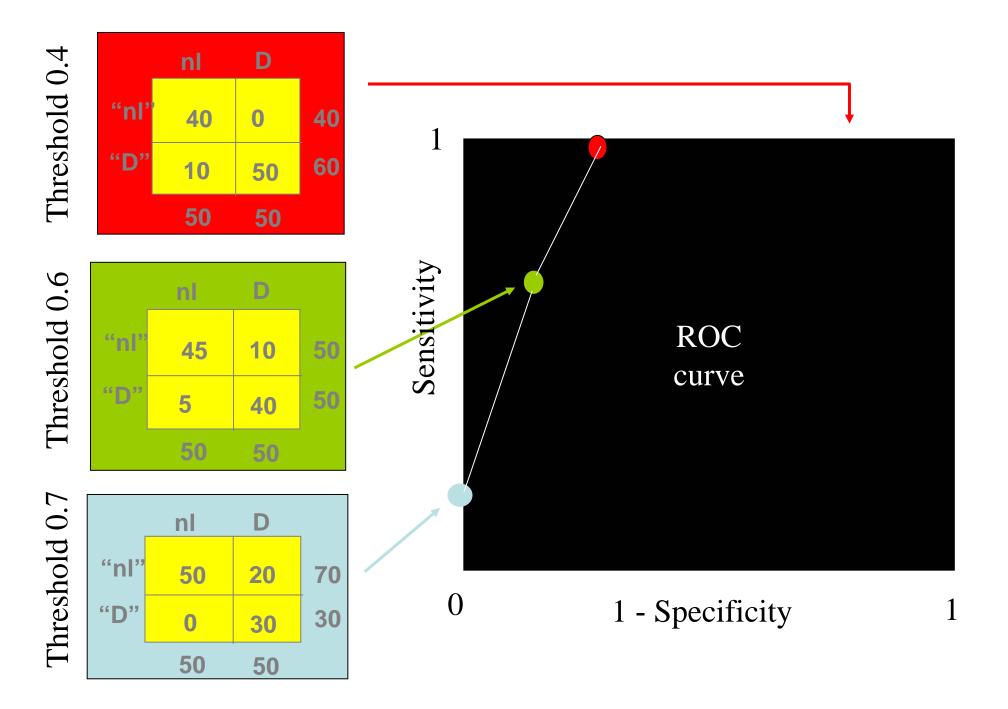


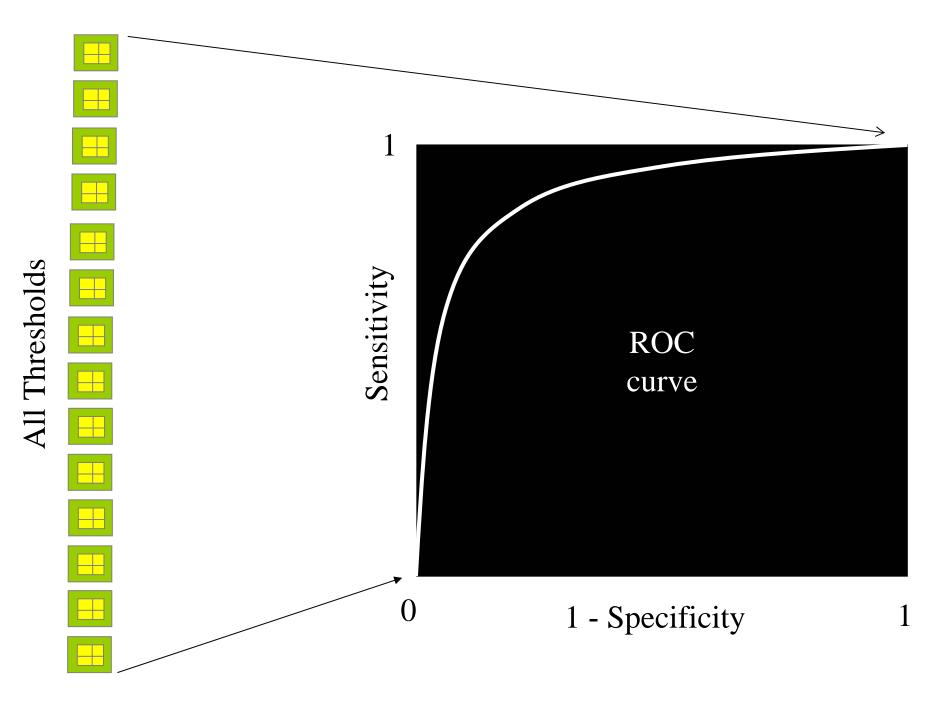
Sens = TP/TP+FN40/50 = .8Spec = TN/TN+FP45/50 = .9PPV = TP/TP + FP40/45 = .89NPV = TN/TN+FN45/55 = .81Accuracy = TN + TP85/100 = .85





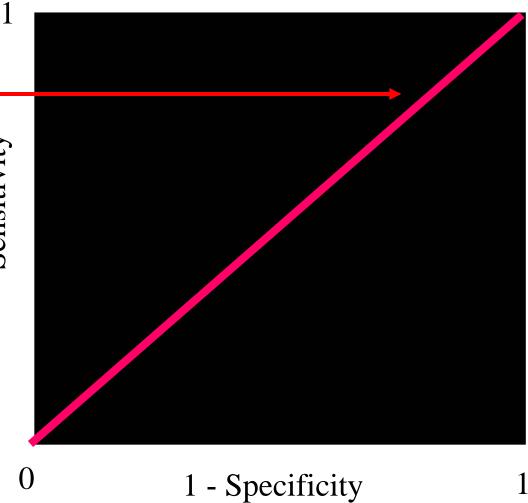


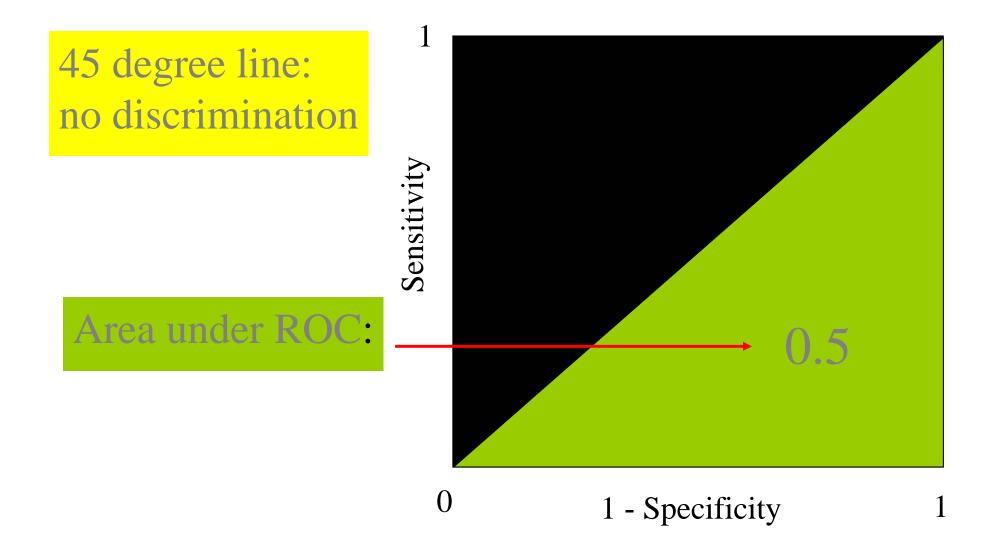




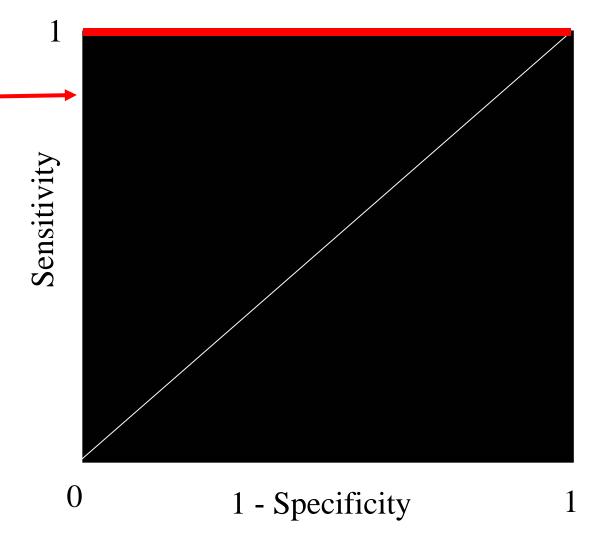
45 degree line: no discrimination

Sensitivity

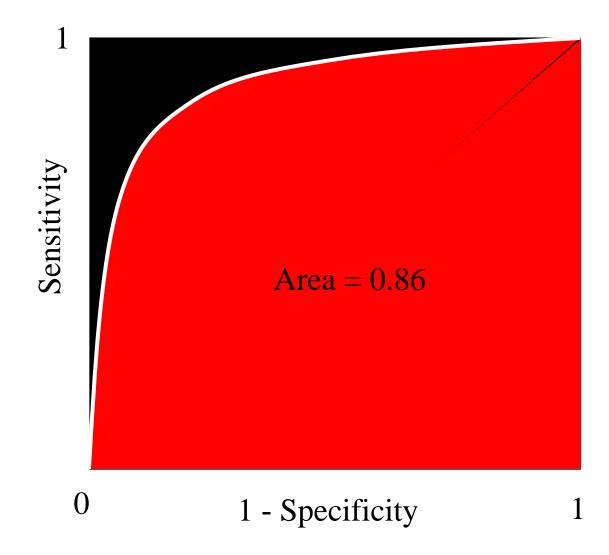




Perfect discrimination







What is the area under the ROC?

- An estimate of the discriminatory performance of the system
 - the real outcome is binary, and systems' estimates are continuous (0 to 1)
 - all thresholds are considered
- Usually a good way to describe the discrimination if there is no particular trade-off between false positives and false negatives (unlike in medicine...)
 - Partial areas can be compared in this case

Simplified Example

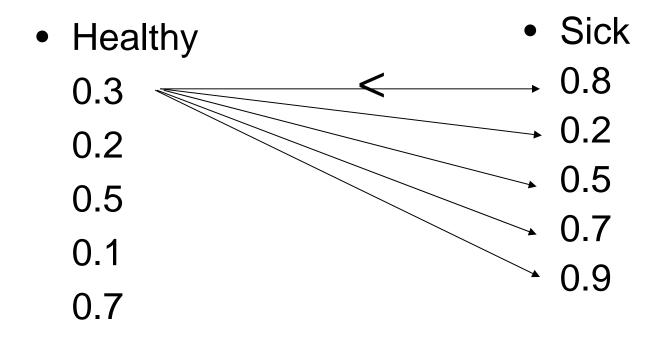
Systems' estimates for 10 patients	0.3
"Probability of being sick"	0.2
"Sickness rank"	0.5
(5 are healthy, 5 are sick):	0.1
	0.7
	0.8
	0.2
	0.5
	0.7

0.9

Estimates per class

•	Healthy (real outcome is 0)	•	Sick (real outcome is1)
	0.3		0.8
	0.2		0.2
	0.5		0.5
	0.1		0.7
	0.7		0.9

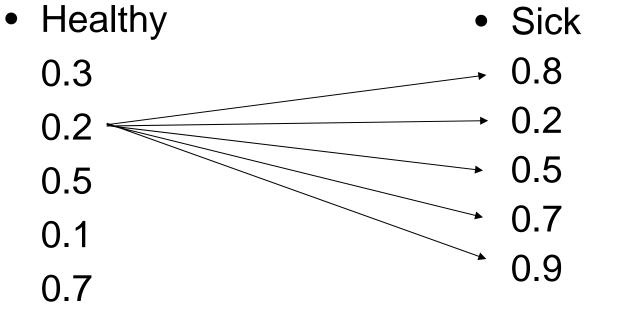
All possible pairs 0-1



concordant discordant concordant concordant concordant

All possible pairs 0-1

Systems' estimates for

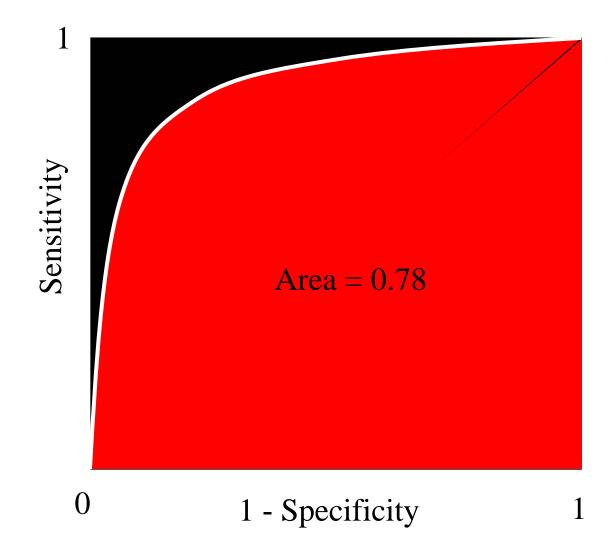


concordant tie concordant concordant concordant

C - index

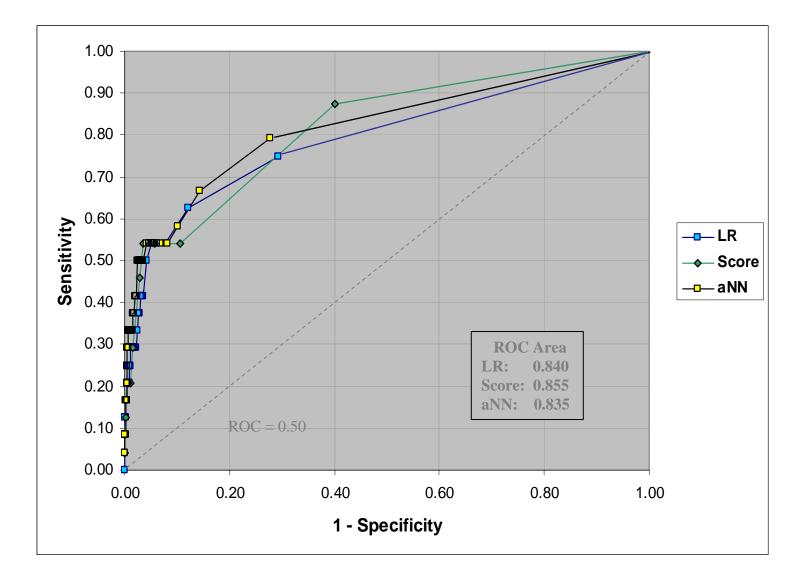
Concordant
Discordant
Ties
4
3

C -index = $\frac{\text{Concordant} + 1/2 \text{ Ties}}{\text{All pairs}} = \frac{18 + 1.5}{25}$



ROC Curves: Death Models

Validation Set: 1460 Cases



Calibration Indices

Discrimination and Calibration

- Discrimination measures how much the system can discriminate between cases with gold standard '1' and gold standard '0'
- Calibration measures how close the estimates are to a "**real**" probability
- "If the system is good in discrimination, calibration can be fixed"

Calibration

- System can reliably estimate probability of
 - a diagnosis
 - a prognosis
- Probability is close to the "real" probability

What is the "real" probability?

- Binary events are YES/NO (0/1) i.e., probabilities are 0 or 1 for a given individual
- Some models produce continuous (or quasicontinuous estimates for the binary events)
- Example:
 - Database of patients with spinal cord injury, and a model that predicts whether a patient will ambulate or not at hospital discharge
 - Event is 0: doesn't walk or 1: walks
 - Models produce a probability that patient will walk:
 0.05, 0.10, ...

How close are the estimates to the "true" probability for a patient?

- "True" probability can be interpreted as probability within a set of similar patients
- What are similar patients?
 - Clones
 - Patients who look the same (in terms of variables measured)
 - Patients who get similar scores from models
 - How to define boundaries for similarity?

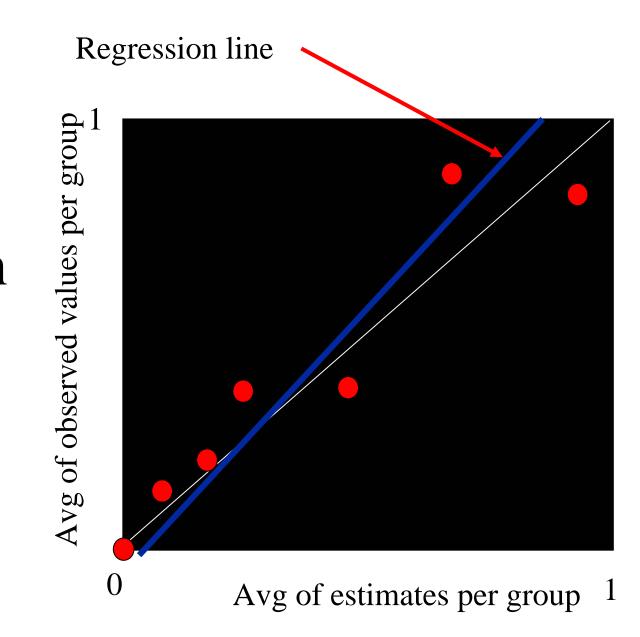
Estimates and Outcomes

- Consider pairs of
 - estimate and true outcome
 - 0.6 and 1
 - 0.2 and 0
 - 0.9 and 0
 - And so on...

Calibration

Sorted poutcome	pairs by systems' estimates	tes	Real
0.1		0	
0.2		0	
0.2	<u>sum o</u> f group = 0.5	1	sum = 1
0.3		0	
0.5		0	
0.5	sum of group = 1.3	1	sum = 1
0.7		0	
0.7		1	
0.8		1	
0.9	sum of group = 3.1	1	sum = 3

Linear Regression and 45⁰ line



Goodness-of-fit

Sort systems' estimates, group, sum, chi-square

Estimated		Observed	
0.1		0	
0.2		0	
0.2	sum of group = 0.5	1	sum = 1
0.3		0	
0.5		0	
0.5	sum of group = 1.3	1	sum = 1
0.7		0	_
0.7		1	
0.8		1	
0.9	sum of group = 3.1	1	<u>sum = 3</u>

 $\chi^2 = \Sigma$ [(observed - estimated)²/estimated]

Hosmer-Lemeshow C-hat

Groups based on *n*-iles (e.g., terciles), *n*-2 d.f. training, *n* d.f. test

Measured Groups

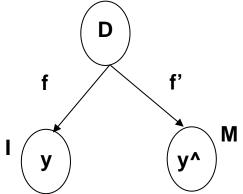
Estimated	Observed	
0.1	0	
0.2	0	
0.2 sum = 0.5	1 sum = 1	
0.3	0	
0.5	0	
0.5 sum = 1.3	1 sum = 1	
0.7	0	
0.7	1	
0.8	1	
0.9 sum = 3.1	1 sum = 3	

Hosmer-Lemeshow H-hat

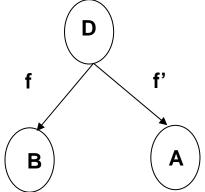
Groups based on *n* fixed thresholds (e.g., 0.3, 0.6, 0.9), *n*-2 d.f. Measured Groups

Estimated		Observed
0.1		0
0.2		0
0.2		1
0.3	sum = 0.8	0 sum = 1
0.5		0
<u>0.5</u>	sum = 1.0	<u>1 sum = 1</u>
0.7		0
0.7		1
0.8		1
0.9	sum = 3.1	1 sum = 3

The "ideal" model generates data *D*.
A "learned" model is learned from *D*.
Once learned, model *M* is fixed.
After learning, *I* and *M* are conditionally independent given *D*.



A and B binary (y-hat and y-ideal)



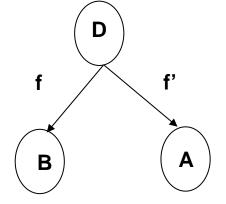
$$= 1 - \sum_{A=B} P(AB \mid D) =$$

$$= 1 - \sum_{A=B} P(AB \mid D) = 1 - \sum_{A=B} P(A \mid D)P(B \mid D) =$$

A represents classification from learned model B represents classification from "ideal"

$$= 1 - \sum_{A=B} P(A | D) P(B | D) =$$
$$= 1 - \sum_{A=B} P(A) P(B) =$$

$$= \left[\frac{1}{2} + \frac{1}{2}\right] - \sum P(A)P(B) + 0 + 0 + 0$$



$$=\frac{1}{2}+\frac{1}{2}-\sum P(A)P(B)+\left[\sum P(AB)-\sum P(AB)\right]+\left[\frac{1}{2}\sum P(A)^{2}-\frac{1}{2}\sum P(A)^{2}\right]+\left[\frac{1}{2}\sum P(B)^{2}-\frac{1}{2}\sum P(B)^{2}\right]=0$$

$$= \frac{1}{2} + \frac{1}{2} - \sum P(A)P(B) + \sum P(AB) - \sum P(AB) + \frac{1}{2}\sum P(A)^{2} - \frac{1}{2}\sum P(A)^{2} + \frac{1}{2}\sum P(B)^{2} - \frac{1}{2}\sum P(B)^{2} = -1[\sum P(A)P(B) - \sum P(AB)] + \frac{1}{2}[1 - \sum P(A)^{2}] + \frac{1}{2}[1 - \sum P(B)^{2}] + \frac{1}{2}[1 - \sum P(B)^{2}] + \frac{1}{2}[\sum P(A)^{2} - \sum P(AB) + \sum P(B)^{2}] = -1[\sum P(A)P(B) - \sum P(AB)] + \frac{1}{2}[1 - \sum P(A)^{2}] + \frac{1}{2}[1 - \sum P(B)^{2}] + \frac{1}{2}[1 - \sum P($$

