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A few “synonyms”…
 

 Agminatics  Nosography 
 Aciniformics  Nosology 
 Q-analysis  Numerical taxonomy 
 Botryology  Typology 
 Systematics  Clustering 
 Taximetrics 
 Clumping  A multidimensional 
 Morphometrics space needs to be 

reduced… 



Supervised Models
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Unsupervised Models
 

test1 Cluster 
Case 1 We are chasing 
Case 2 ANY pattern in 

the data… 

We will need to 
interpret (label) 
the pattern 
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Exploratory Data Analysis
 
 Goal is to flatten the dimensions of data to the 

spaces that we are familiar with (2-D and 3-D) 
 We can “see” the data in these dimensions and 

extract patterns 

 We are looking for clusters of data with similar 
characteristics overall 

 Hypothesis generation versus hypothesis testing 
 Fishing expedition versus confirmatory analysis 



Outline
 

 Proximity
 
 Distance Metrics 
 Similarity Measures 

 Clustering 
 Hierarchical Clustering 

 Agglomerative 
 K-means 

 Multidimensional Scaling 



Spatial relations
 

 Distance and dissimilarity 
 E.g. Euclidean distance, perceived 
difference 

 Proximity and similarity measures 
 E.g. correlation coefficient Distance matrix 

House Harvard MIT BWH 
House 
Harvard 15 
MIT 18 4 
BWH 10 3 5 



Unsupervised Learning
 

Distance 
or 

Similarity 
Matrix 

Dimensionality 
Reduction 

•MDS 

Clustering 
•Hierarchical 

•Non-hierar. 

Graphical 

Representation 

Raw 

Data 

“Validation” 

•Internal 

•External 



Algorithms, (dis)similarity measures, 
and graphical representations 

	 Most algorithms are not necessarily linked to a 
particular metric or (dis)similarity measure 

	 Also not necessarily linked to a particular graphical 
representation 

	 Cluster techniques were popular in the 50/60s 
(psychology experiments) 

	 There has been recent interest in biomedicine 
because of the emergence of high throughput 
technologies 

	 Old algorithms have been rediscovered and renamed 



Metrics (distances)
 



Minkowski r-metric
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Metric spaces
 

 Positivity dij > dii = 0

Reflexivity 

 Symmetry dij = d ji 
 Triangle 
inequality dij ≤ dih + dhj
 

j 

h i 



More metrics
 
j

 Ultrametric dij ≤ max[dih , dhj ] 
replaces 
dij ≤ dih + dhj 

i h 

 Four-point dhi + d jk ≤ max[(dhj + dik ), (dhk + dij )] 
additive replaces 

condition dij ≤ dih + dhj 



Similarity measures
 

 Similarity function 
 For binary, “shared attributes” 

t 

i s , j) = 
i j
( 
i j 

i s , j) = 
1 it = [1,0,1]( 

t2 ×1 j = [0,0,1] 



Variations…
 

 Fraction of d attributes shared
 
t 

(i s , j) = 
i j
 
d 

 Tanimoto coefficient
 
t 

i s , j) = 
i j( t t ti i + j j − i j 

1 it = [1,0,1] 
i s , j) = 

2 +1−1 jt = [0,0,1](
 



Popular similarity measures
 

 Correlation
 
 Linear 
 Rank 

 Entropy-based
 
 Mutual information, based on the P(i|j) 

 Ad-hoc 
 Human perception 



Clustering
 



Hierarchical Clustering
 

 Agglomerative Technique (average link) 
 Step 1: “Merge” 2 closest cases into a cluster 
 Step 2: Define cluster representative (e.g. , cluster 
means) as a “case” and remove the individual 
cases that compose the cluster 

 Go to step 1 until all cases are linked 

 Visualization 
 Dendrogram, Tree, Venn diagram 



Data Visualization
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Figure by MIT OCW.




Hierarchical Clustering on Small 
 
Round Blood Cell Tumours
 

RMS BL NB EWS
 



Linkages
 

	 Average-linkage: proximity to the mean 
(centroid) 

	 Single-linkage: proximity to the closest 
element in another cluster 

	 Complete-linkage: proximity to the most 
distant element 



Mean Linkage
 

	 Assign case 
according to 
proximity to 
the mean x x 

(centroid) of 
another cluster x O O 

O 
x O 



Single Linkage
 

	 Assign case 
according to 
proximity to 
the closest x x 

element in 
another cluster x O O 

O 
x O 



Complete Linkage
 

	 Assign case 
according to 
proximity to 
the most 
distant 
element 

x x 

x 

x 

O O 
O 

O 



Additive Trees
 

 Commonly the minimum spanning tree 
 Nearest neighbor approach to 
hierarchical clustering 



k-means clustering 
 
(Lloyd’s algorithm)
 

1.	 Select k (number of clusters) 
2.	 Select k initial cluster centers c k1,…,c 
3.	 Iterate until convergence: For each i, 
 

1.	 Determine data vectors vi1,…,vin closest 
to ci (i.e., partition space) 

2.	 Update ci as ci = 1/n (vi1+…+vin ) 



k-means clustering example
 



k-means clustering example
 



k-means clustering example
 



Common mistakes
 

 Refer to dendrograms as meaning 
“hierarchical clustering” in general 

 Misinterpretation of tree-like graphical 
representations 

 Ill definition of clustering criterion 
 Declare a clustering algorithm as “best” 

 Expect classification model from clusters 
 Expect robust results with little/poor data 



Dimensionality Reduction
 



Multidimensional Scaling
 

	 Geometrical models
 

	 Uncover structure or pattern in 
observed proximity matrix 

	 Objective is to determine both 
dimensionality d and the position of 
points in the d-dimensional space 



Classic Multidimensional Scaling
 

	 Also known as principal coordinates 
analysis (because it is principal 
components analysis) ☺ 

	 From distances, find coordinates
 

	 Constrain origin to centroid of data 



Metric and non-metric MDS
 

 Metric (Torgerson 1952) 
 Non-metric (Shepard 1961) 

 Estimates nonlinear form of the monotonic 
function 

sij = fmon (dij )
 



Stress and goodness-of-fit
 
Stress Goodness of fit
 

 20  Poor 
 10  Fair 
 5  Good 
 2.5  Excellent 
 0  Perfect 
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Visualization


	 Clustering is often 
good for visualization, 
but it is generally not 
very useful to 
separate data into 
pre-defined 
categories 

	 But there are 
counterexamples… 
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