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Outline

Basic concepts & distributions


– Survival, hazard 
– Parametric models 
– Non-parametric models 

Simple models 
– Life-table

– Product-limit


Multivariate models

– Cox proportional hazard 
– Neural nets  



What we are trying to do

Predict survival (or more 
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Variable 1 Variable 2 survival 

0.7 -0.2 8+ 
0.6 0.5 4 
-0.6 0.1 2 
0 -0.9 3+ 
-0.4 0.4 2 
-0.8 0.6 3 
0.5 -0.7 4 

probability of at least n 
Case 1 years of survival) 
Case 2 

• and evaluate 
… performance on 

new cases 

• and determine 
which variables are 
important

Using these 



Censoring 
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Survival function

Probability that an individual survives at least t, T is patient’s 

survival 
• S(t) = P(T > t) = 1 – F(t) 
• Survival is cumulative, non-increasing function


• F(t) is cumulative distribution of death (failure)

• By definition, S(0) = 1 and S(∞)=0 
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Unconditional failure rate


• pdf of T 
• f(t) = lim Δt-> 0 P(individual dies (t,t+Δt))/ Δt 
• f(t) always non-negative 
• Area below density is 1 
• Estimated by 
# patients dying in the interval/total patients 



Conditional failure rate


• Hazard function 
• h(t) = lim Δt-> 0 P(survivor until t dies (t,t+Δt))/ Δt 
• h(t) is conditional instantaneous failure rate


• Estimated by 
# patients dying in the interval/survivors at t 



f (t) ∂ = F (t) / ∂ (t) Hazard Function
F (t) = 1− S(t) 
t f ) = −∂ S(t) / ∂ (t) λ( 
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Parametric estimation


Example: Exponential 
-λt• f(t)  = λe 
-λt• S(t) = e  

• h(t) = λ 

S(t) h(t) 

1

λ


t t 



Weibull distribution


•	 Generalization of the 
exponential 

λ,γ > 0 
• f(t) =  γλ(λt)γ-1 e-λt γ 

• S(t) -λt γ 

• h(t) = γλ(λt) γ-1 
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Non-Parametric estimation

Product-Limit (Kaplan-Meier) 

S(t ) = Π (nj - dj )/ nji

S(t) 

dj is the number of deaths in interval j 
nj is the number of individuals at risk 
Product is from time interval 1 to j 
One interval per death time 

t 
2 4 5 8 



Kaplan-Meier

• Example 


•	 Deaths: 10, 37, 40, 80, 91,143, 164, 188, 188, 190, 
192, 206, … 



Life-Tables

• AKA actuarial method

S(t ) = Π (nj - dj )/ nji

dj is the number of deaths in interval j

nj is the number of individuals at risk


Product is from time interval 1 to j


• Pre-defined intervals j 

S(t) Kaplan-Meier S(t) 

are independent of death times 

1 1 

2 2 1 2 3 
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Simple models




Multiple strata




Multivariate models


•	 Several strata, each defined by a set of 
variable values 

•	 Could potentially go as far as “one 
stratum per case”? 

•	 Can it do prediction for individuals?




Cox Proportional Hazards


•	 Regression model

•	 Can give estimate of hazard for a 

particular individual relative to baseline 
hazard at a particular point in time 

•	 Baseline hazard can be estimated by, 
for example, by using survival from the 
Kaplan-Meier method or parametrically 



Proportional Hazards


λi = λ eβxi


where λ is baseline hazard (ie, for the “baseline” –

usually the most common patient) and x is covariate
i 
vector for a specific patient i

Cox proportional hazards 
hi(t) = h0(t) e βxi 

• Survival 

i
S (t) = [S0(t)]

eβx
i




Cox Proportional Hazards


hi(t) = h0(t) e βxi 

•	 From the set of m individuals at risk at time j (Rj), the probability of 
picking exactly the one who died is 

Σ
h0(t) e βxi 

m h0(t) e βxm 

•	 Then likelihood function to maximize to all j is 

•	 L(β) = Πj (e βxi / Σm e βxm ) 

•	 MLE uses LogLikelihood 



Important details


•	 Survival curves can’t cross if hazards are 
proportional 

•	 There is a common baseline h0, but we don’t need to
know it to estimate the coefficients 

•	 Ie, we don’t need to know the shape of hazard
function 

•	 Cox model is commonly used to interpret importance 
of covariates (amenable to variable selection
methods) 

•	 It is the most popular multivariate model for survival

•	 Testing the proportionality assumption is difficult and 

hardly ever done 



Estimating survival for a 

patient using the Cox model


•	 Need to estimate the baseline


•	 Can use parametric or non-parametric 
model to estimate the baseline 

•	 Can then create a continuous “survival 
curve estimate” for a patient 

•	 Baseline survival can be, for example:

– Kaplan-Meier estimate 



Example of survival estimates




What if the proportionality 

assumption is not OK?


•	 Survival curves may 
cross 

•	 Other multivariate 
models can be built 

•	 Survival at certain time 
points are modeled and 
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Single-point models


• Logistic regression


• Neural nets 

age 
gender 

blood pressure CHD in t
cholesterol a 

smoking 
weight 



Problems


•	 Dependency 
between intervals is 
not modeled (no 
links between 
networks) 

•	 Nonmonotonic 
curves may appear 

•	 How to evaluate?


Survival 
(%) 

nonmonotonic 
curve 

S(2)S(1)=0.9 S(3)=0.4 S(4)=0.3 S(5)=0.5 S(6)=0.3 

1 2 3 4 5 6
Year 

=0.6 

patients 
followed 
for >1 year >2 years >3 years >4 years >5 years >6 years 

input nodes: patient data 

output nodes: probability of survival in a given time point 



Figures removed due to copyright reasons. 

Please see Tables III, V, VI and figures 6, 8, and 10 in: 

Ohno-Machado, Lucila, and Mark A. Musen. "Modular Neural Networks for Medical 

Prognosis: Quantifying the Benefits of Combining Neural Networks for Survival 

Prediction." Connection Science 9, no. 1 (March 1997): 71-86.




Accounting for dependencies


•	 “Link” networks Survival (%) 

in some way to 
account for 
dependencies 

monotonic 
curve 

0 1 2 3 4 
Year S(4)=0.2 

)S(3 =0.3 

ower network serves as Output from l
input for upper network. 
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Figures removed due to copyright reasons. 

Please see Tables III, V, VI and figures 6, 8, and 10 in: 

Ohno-Machado, Lucila, and Mark A. Musen. "Modular Neural Networks for Medical 

Prognosis: Quantifying the Benefits of Combining Neural Networks for Survival 

Prediction." Connection Science 9, no. 1 (March 1997): 71-86.




Survival without Coronary Disease 



Figure removed due to copyright reasons. 

Please see figure 10 in: 

Ohno-Machado, Lucila, and Mark A. Musen. "Sequential versus standard neural networks 

for pattern recognition: an example using the domain of coronary heart disease." 

Comput Biol Med 27, no. 4 (Jul 1997): 267-81.




Summary


•	 Kaplan-Meier for simple descriptive 
analysis 

•	 Cox Proportional for multivariate prediction 
if survival curves don’t cross 

•	 Other methods for multivariate survival 
exist: logistic regression, neural nets, 
CART, etc. 




