Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

Review of some concepts in predictive modeling

Lucila Ohno-Machado,

Brigham and Women's Hospital

Topics

- Decision trees
- Linear regression
 MDS
- Logistic regression Neural nets
- Evaluation
- Classification trees
- Ensembles
- PCA

- Clustering

$2 \ge 2$ table (contingency table)

	PPD+	PPD-		
TB	8	2	10	
no TB	3	87	90	
	11	89	100	

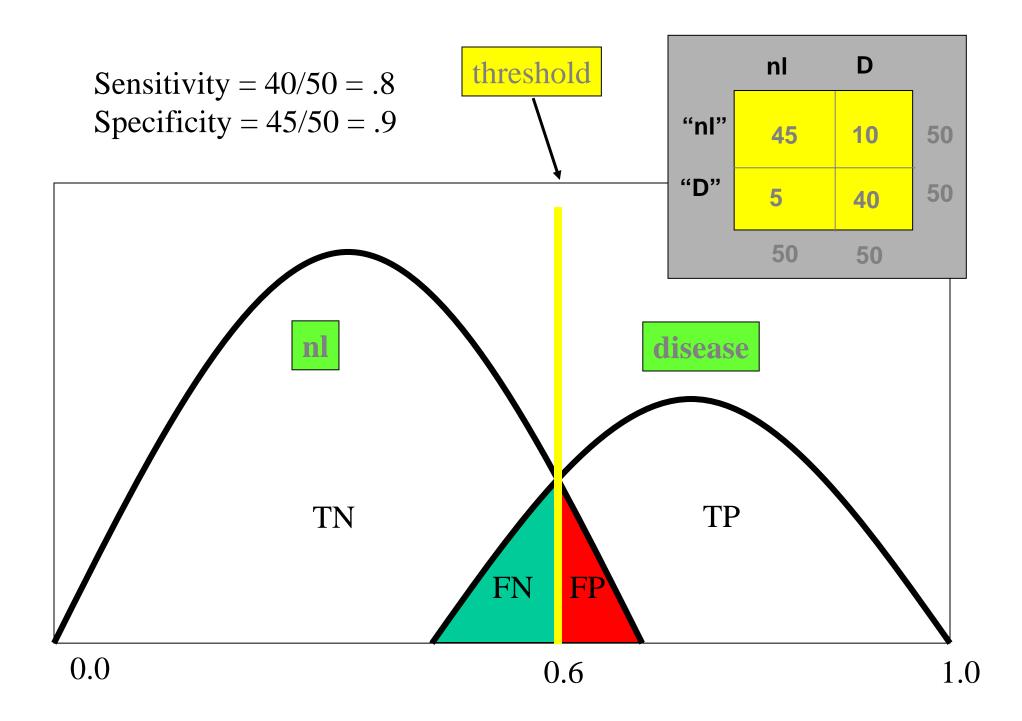
Probability of TB given PPD- = 2/89

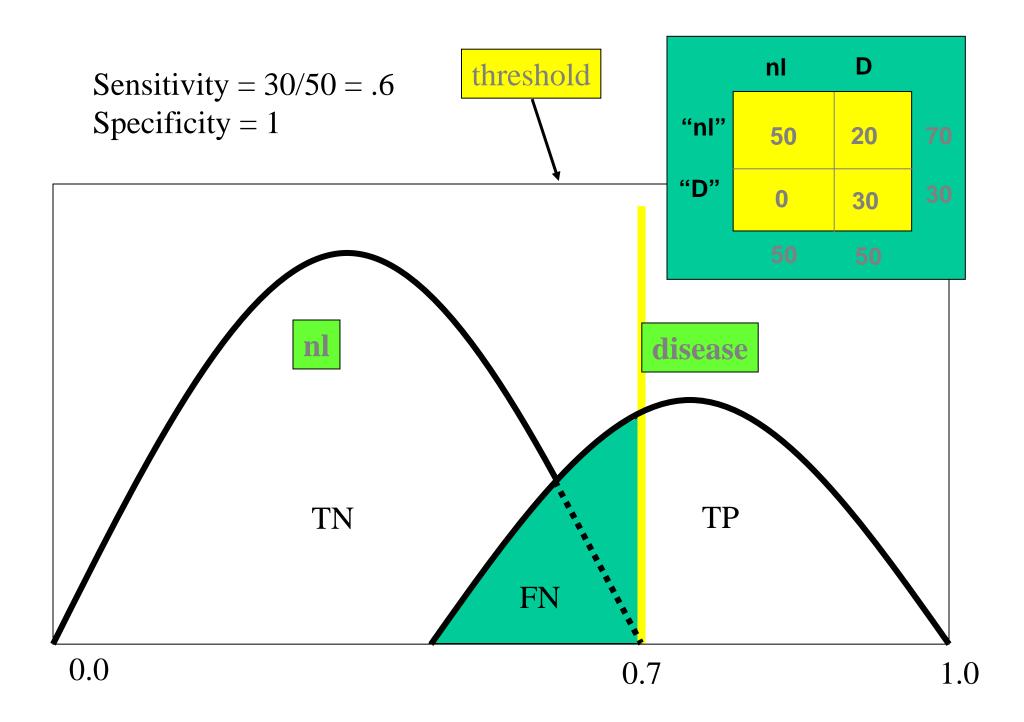
Bayes rule

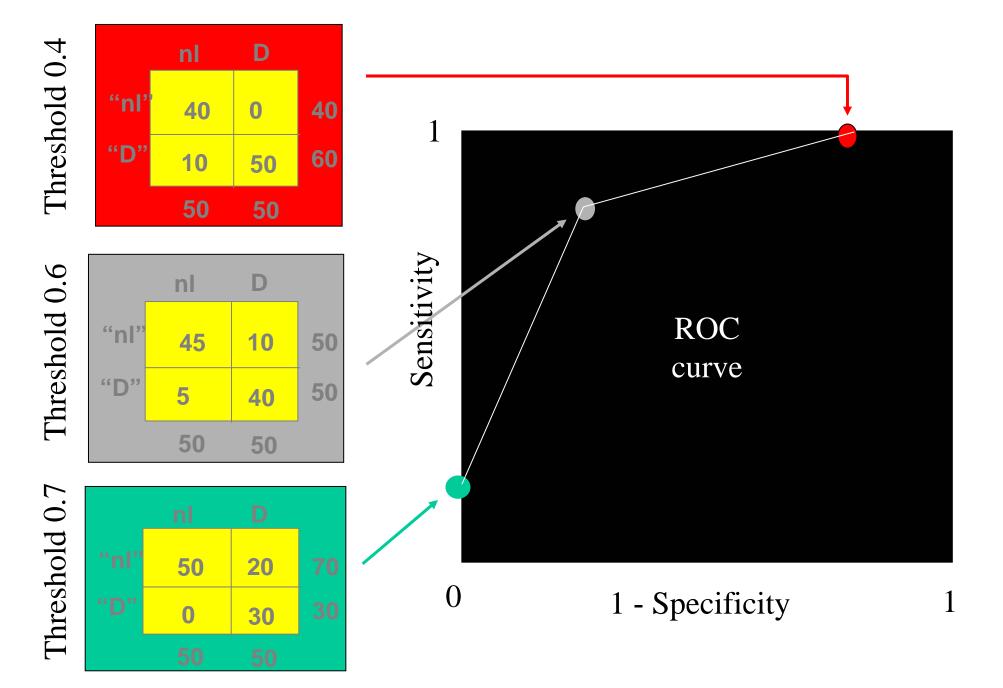
- Definition of conditional probability:
- P(A|B) = P(AB)/P(B)

P(B|A) = P(BA)/P(A)P(AB) = P(BA)P(A|B)P(B) = P(B|A)P(A)

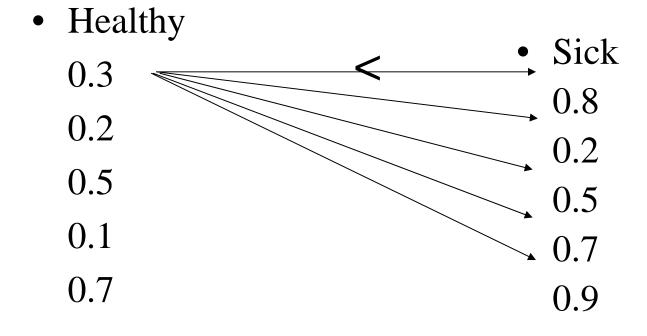
$\mathbf{P}(\mathbf{A}|\mathbf{B}) = \mathbf{P}(\mathbf{B}|\mathbf{A})\mathbf{P}(\mathbf{A})/\mathbf{P}(\mathbf{B})$







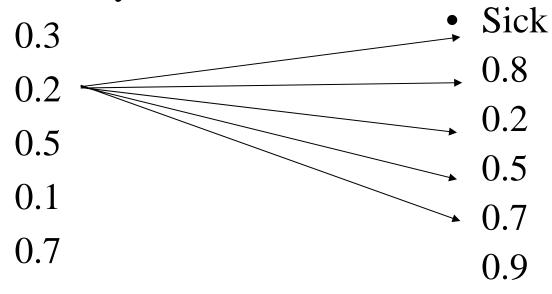
All possible pairs 0-1



concordant
discordant
concordant
concordant
concordant

All possible pairs 0-1 Systems' estimates for

• Healthy



concordant
tie
concordant
concordant
concordant

C - index

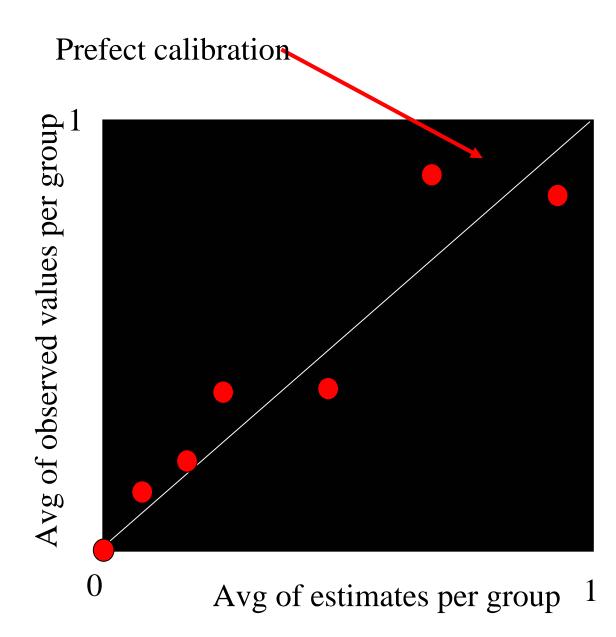
Concordant
18
Discordant
3

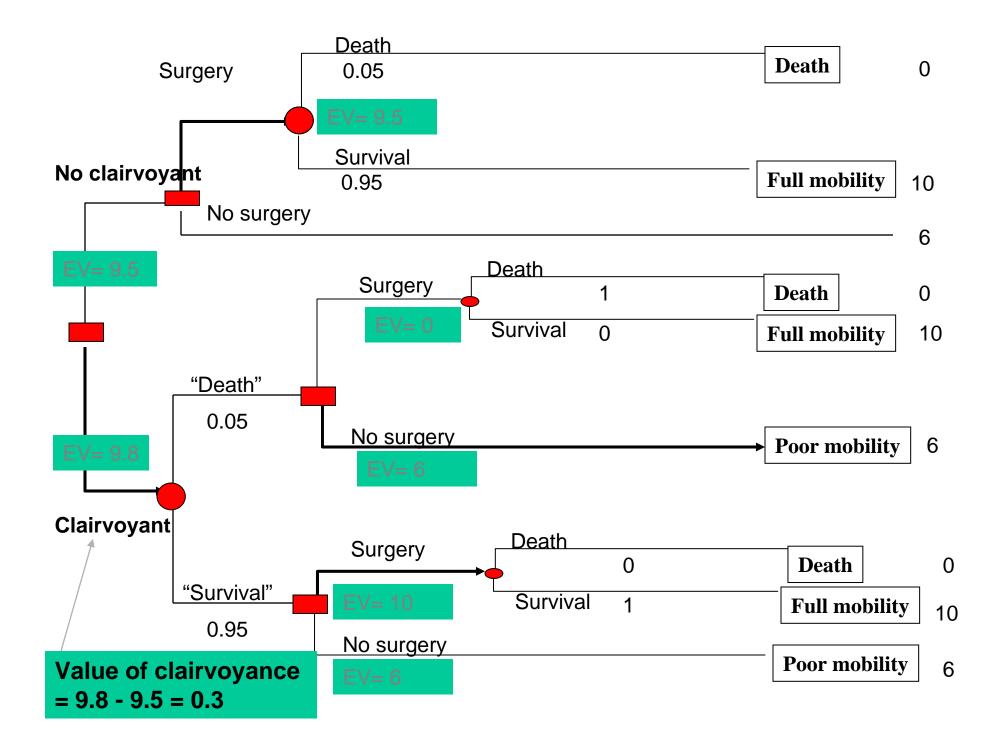
C -index = $\underline{\text{Concordant} + 1/2 \text{ Ties}} = \underline{18 + 1.5}$ All pairs 25

Calibration

Sorted p	airs by systems' estim	Real outcomes	
0.1			0
0.2			0
0.2	<u>sum</u> of group = 0.5	1 _	sum = 1
0.3			0
0.5			0
0.5	sum of group = 1.3	1	sum = 1
0.7			0
0.7			1
0.8			1
0.9	sum of group = 3.1	1	sum = 3

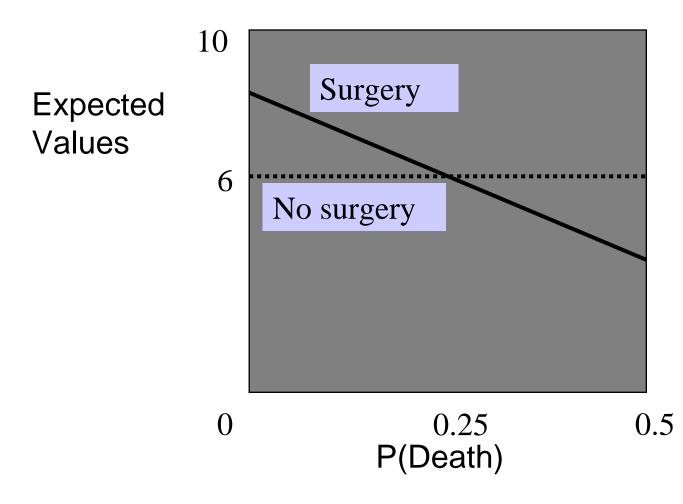
Calibration plot



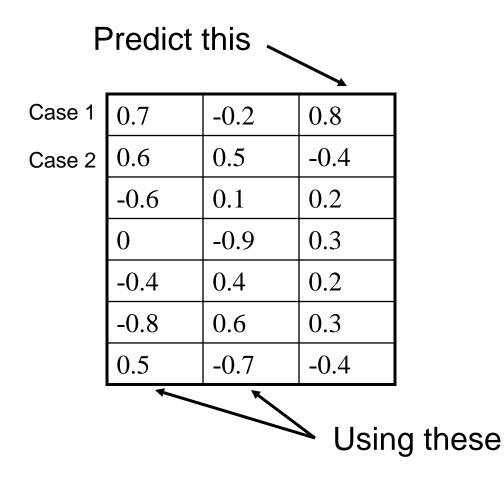


Sensitivity Analysis

• Effect of probabilities in the decision



What predictive models do



and evaluate performance on new cases

0.6	-0.1	?
0.4	0.6	?
-0.1	0.2	?
0	-0.5	?
-0.3	0.4	?
-0.8	0.7	?
0.3	-0.7	?

Predictive Model Considerations

- Select a model
 - Linear, Nonlinear
 - Parametric, non-parametric
 - Data separability
 - Continuous versus discrete (categorical) outcome
 - Continuous versus discrete variables
 - One class, multiple classes
- Estimate the parameters (i.e., "learn from data")
- Evaluate

Predictive Modeling Tenets

- Evaluate performance on a set of new cases
- Test set should not be used in any step of building the predictive modeling (model selection, parameter estimation)
- Avoid overfitting
 - "Rule of thumb": 2-10 times more cases than attributes
 - Use a portion of the training set for model selection or parameter tuning
- Start with simpler models as benchmarks

Desirable properties of models

- Good predictive performance (even for non-linearly separable data)
- Robustness (outliers are ignored)
- Ability to be interpreted
 - Indicate which variables contribute more for the predictions
 - Indicate the nature of variable interactions
 - Allow visualization
- Be easily applied, be generalizable to other measurement instruments, and easily communicated

correlation_coefficient

$$r = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \rho$$

VARIANCE

$$\sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})$$

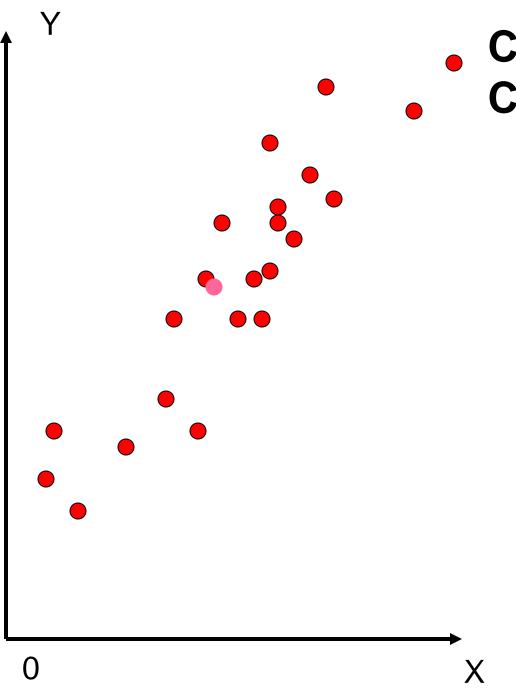
$$\sigma_{XX} = \frac{n-1}{n-1}$$

COVARIANCE

$$\sigma_{XY} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n - 1}$$

st_deviation

$$\sigma_{X} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(X_{i} - \overline{X})}{n - 1}}$$



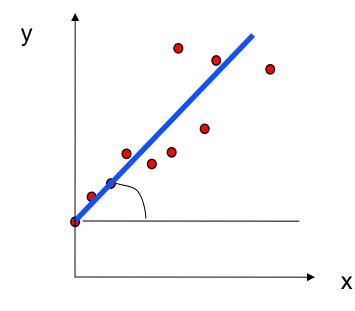
Covariance and Correlation Matrices

 $\operatorname{cov} = \begin{vmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{vmatrix}$ $corr = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$ $\sigma_{XY} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n - 1}$ $\sigma_{XX} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})}{n-1}$ Slope from linear regression is asymmetric, covariance and p are symmetric

$$\beta_0 = \overline{y} - \beta_1 \overline{x} \qquad \qquad y = \beta_0 + \beta_1 x$$

$$\beta_1 = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - \overline{x})^2} \qquad \qquad y = 2 + 4x$$

$$x = y/4 - 2$$



$$cov = \begin{bmatrix} 0.86 & 0.35 \\ 0.35 & 15.69 \end{bmatrix} = \Sigma$$
$$corr = \begin{bmatrix} 1 & 0.96 \\ 0.96 & 1 \end{bmatrix}$$

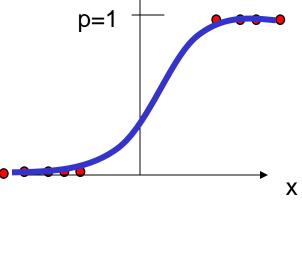
Solve system of	normal equations
$\beta_0 n + \beta_1 \sum x = \sum y$	Normal equation 1
$\beta_0 \sum x + \beta_1 \sum x^2 = \sum yx$	Normal equation 2
$\beta_0 = \overline{y} - \beta_1 \overline{x}$	y total
$\beta_1 = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - \overline{x})^2}$	

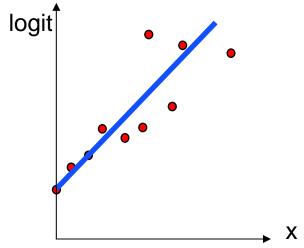
$$p_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i})}}$$

$$p_{i} = \frac{e^{\beta_{0} + \beta_{1}x_{i}}}{e^{\beta_{0} + \beta_{1}x_{i}} + 1}$$

$$p_{i} = \frac{1}{e^{\beta_{0} + \beta_{1}x_{i}}}$$

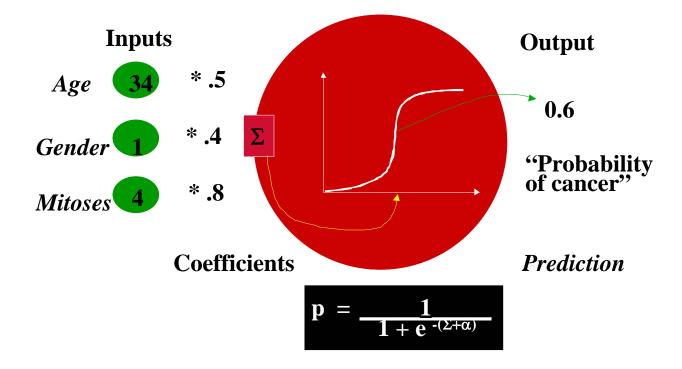
$$\log\left[\frac{p_i}{1-p_i}\right] = \beta_0 + \beta_1 x_i$$
$$\log\left[\frac{p_i}{1-p_i}\right] = \sum_i \beta x_i$$





Logistic Regression

- Good for interpretation
- Works well only if data are linearly separable
- Interactions need to be entered manually
- Not likely to overfit if # variables is low



What do coefficients mean?

$$e^{\beta_{age}} = OR_{age}$$

				$p_{death age=50}$
	Age49	Age50		$OR = \frac{1 - p_{death age=50}}{1 - p_{death age=50}}$
Death	28	22	50	$OR = - p_{death age=49}$
Life	45	52	97	
Total	73	74	147	$1 - p_{death age=49}$

What do coefficients mean?

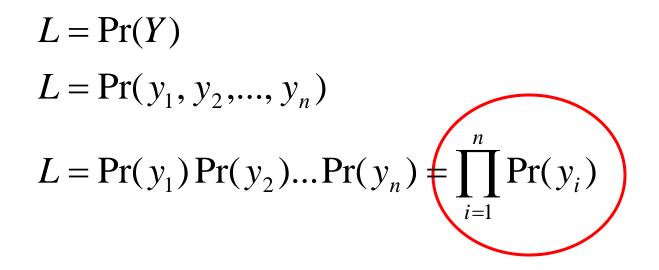
 $e^{\beta_{color}} = OR_{color}$

				$OR = \frac{28 / 45}{22 / 52} = 1.47$
	Blue	Green		$e^{\beta_{color}} = 1.47$
Death	28	22	50	$\beta_{color} = 0.385$
Life	45	52	97	$p_{blue} = \frac{1}{1 + e^{-(-0.8616 + 0.385)}} = 0.383$
Total	73	74	147	$I + e^{(-0.0010+0.000)}$
				$p_{green} = \frac{1}{1 + e^{0.8616}} = 0.297$

Maximum Likelihood Estimation

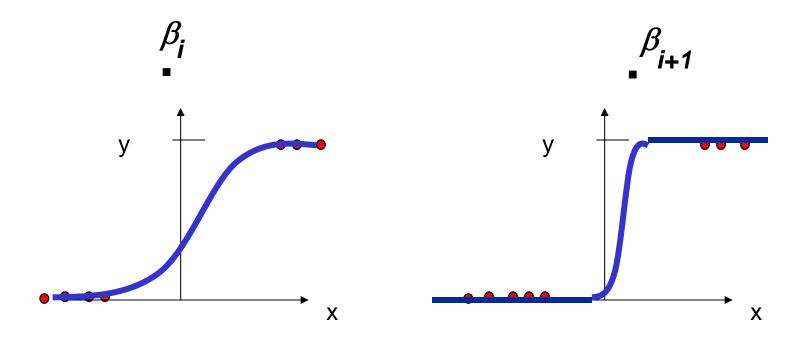
- Steps:
 - Define expression for the probability of data as a function of the parameters
 - Find the values of the parameters that maximize this expression

Likelihood Function



Complete separation

MLE does not exist (ie, it is infinite)



Logistic Regression and non-linearly-separable problems

- Simple form below cannot deal with it
- $Y = 1/(1 + exp (ax_1 + bx_2))$
- Adding interaction terms transforms the space such that problem may become linearly separable
- $Y = 1/(1 + exp (ax_1 + bx_2 + cx_1x_2))$

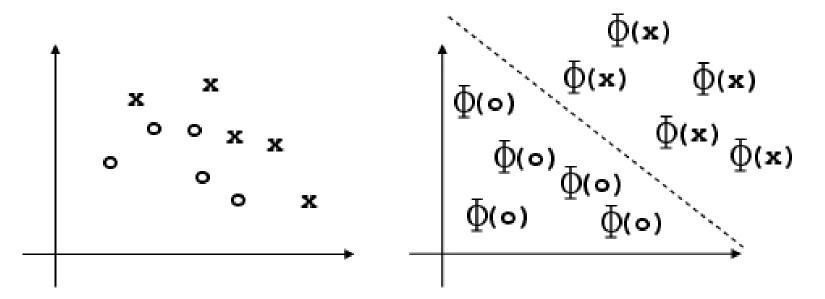
Figures removed due to copyright reasons.

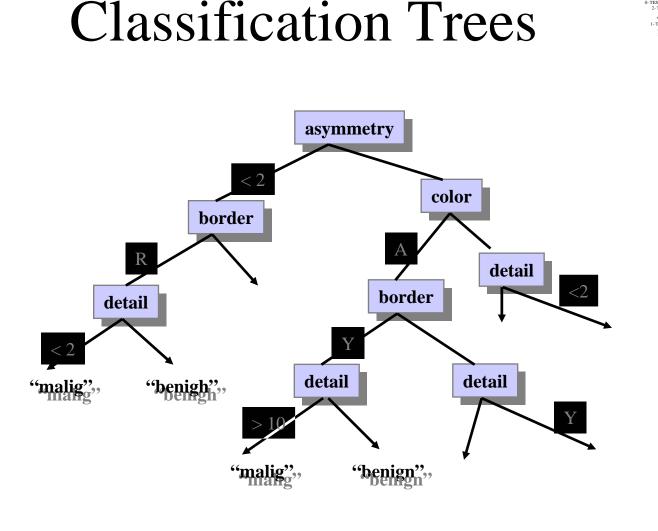
Please see:

Khan, J., et. al. "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks." *Nat Med* 7, no. 6 (June 2001): 673-9.

Kernel trick

- Idea: Nonlinearly project data into higher dimensional space with $\Phi: \mathbb{R}^m \rightarrow H$
- Apply linear algorithm in *H*

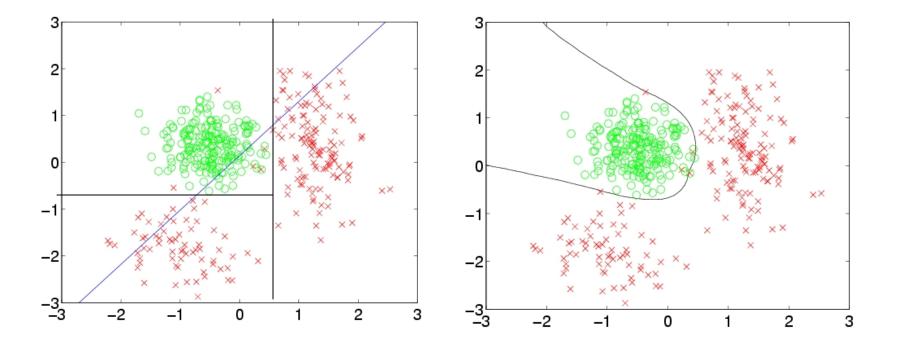




********PRUNED!!! *******PRUNED!!! *******PRUNED!!! ********PRUNED!!! ******PRUNED!!!

From perceptrons to CART, to multilayer perceptrons

Why?



"LARGE" data sets

- In predictive modeling, large data sets have several cases (with few attributes or variables for each case)
- In some domains, "large" data sets with several attributes and few cases are subject to analysis (predictive modeling)
- The main tenets of predictive modeling should be always used

"Large *m* small *n*" problem

- *m* variables, *n* cases
- Underdetermined systems
- Simple memorization even with simple models
- Poor generalization to new data
- Overfitting

Reducing Columns

Some approaches:

•Principal Components Analysis

(a component is a linear combination of variables with specific coefficients)

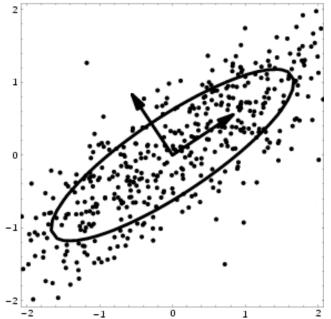
•Variable selection

0.7	-0.2	0.8
0.6	0.5	-0.4
-0.6	0.1	0.2
0	-0.9	0.3
-0.4	0.4	0.2
-0.8	0.6	0.3
0.5	-0.7	-0.4

1

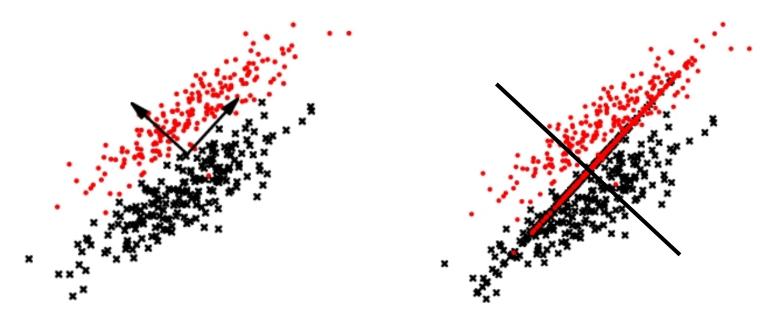
Principal Component Analysis

- Identify direction with greatest variation (combination of variables with different weights)
- Identify next direction conditioned on the first one, and so on until the variance accounted for is acceptable



PCA disadvantage

- No class information used in PCA
- Projected coordinates may be bad for classification



Related technique

- Partial Least Squares
 - PCA uses X to calculate directions of greater variation
 - PLS uses X and Y to calculate these directions
 - It is a variation of multiple linear regression

PCA maximizes PLS maximizes $Var(X\alpha)$,

 $Corr^2(y,X\alpha)Var(X\alpha)$

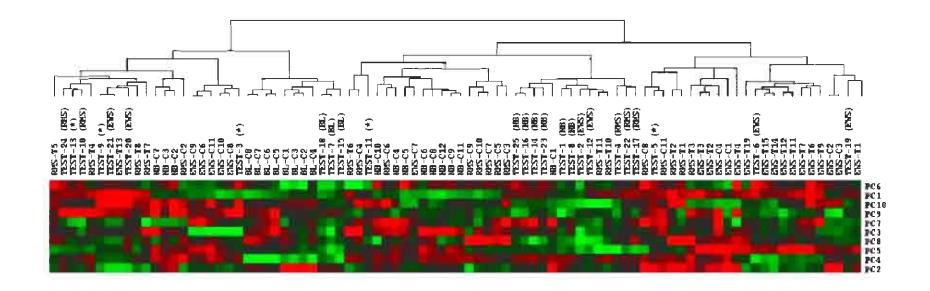
Variable Selection

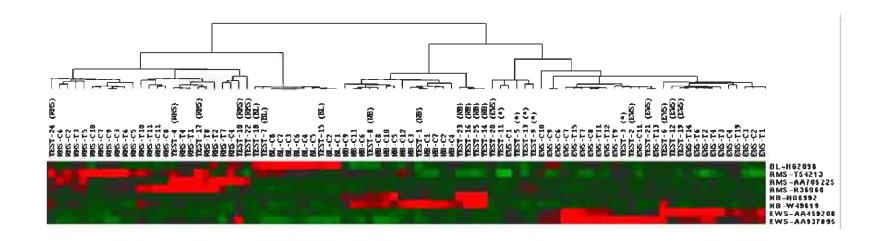
- Ideal: consider all variable combinations
 - Not feasible: 2ⁿ
 - Greedy Backward: may not work if more variables than cases
- Greedy Forward:
 - Select most important variable as the "first component"
 - Select other variables conditioned on the previous ones
 - Stepwise: consider backtracking
- Other search methods: genetic algorithms that optimize classification performance and # variables

Simple Forward Variable Selection

- Conditional ranking of most important variables is possible
- Easy interpretation of resulting LR model
 - No artificial axis that is a combination of variables as in PCA
- No need to deal with too many columns
- Selection based on outcome variable

– uses classification problem at hand

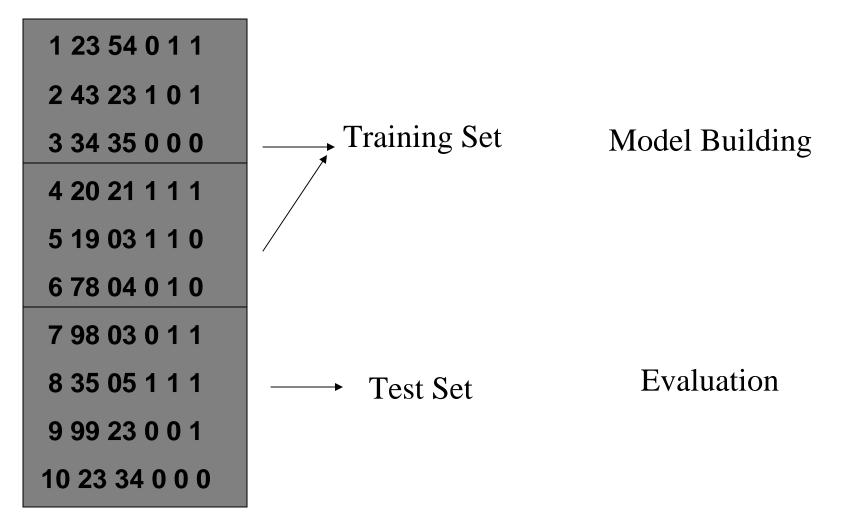




Cross-validation

- Several training and test set pairs are created
- Results are pooled from all test sets
- "Leave-*n*-out"
- Jackknife ("Leave-1-out")

Leave-N/3-out



Bootstrap

- Efron (Stanford biostats) late 80's
 - "Pulling oneself up by one's bootstraps"
- Nonparametric approach to statistical inference
- Uses *computation* instead of traditional distributional assumptions and asymptotic results
- Can be used for non-linear statistics without known standard error formulas

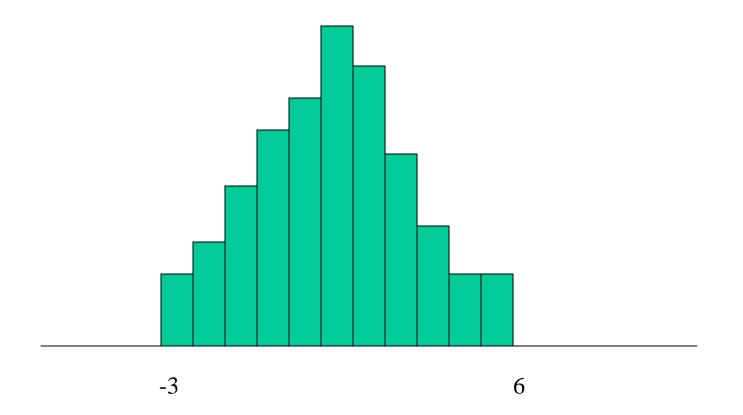
Sample with Replacement

Sample	Y ₁ *	Y ₂ *	Y ₃ *	Y ₄ *	\overline{Y}^*
1	6	6	6	6	6.00
2	6	6	6	-3	3.75
3	6	6	6	5	5.75
100	-3	5	6	3	2.75
101	-3	5	-3	6	1.25
•••					
255	-3	3	3	5	3.5
256	3	3	3	3	3.00

The population is to the sample as the sample is to the bootstrap samples

In practice (as opposed to previous example), not all bootstrap samples are selected

Empirical distribution of Y



Bootstrap Confidence Intervals

- Percentile Intervals
 - Example
 - 95% CI is calculated by taking
 - Lower = 0.025 x bootstrap replicates
 - Upper = 0.975 x bootstrap replicates

Bagging

- Breiman, 1996
- Derived from bootstrap (Efron, 1993)
- Create classifiers using training sets that are bootstrapped (drawn with replacement)
- Average results for each case

Boosting

- A family of methods
- Sequential production of classifiers
- Each classifier is dependent on the previous one, and focuses on the previous one's errors
- Examples that are incorrectly predicted in previous classifiers are chosen more often or weighted more heavily

Visualization

- Capabilities of predictive models in this area are limited
- Clustering is often good for visualization, but it is generally not very useful to separate data into pre-defined categories
 - Hierarchical trees
 - 2-D or 3-D multidimensional scaling plots
 - Self-organizing maps

Visualizing the classification potential of selected inputs

- Clustering visualization that uses classification information may help display the separation of the cases in a limited number of dimensions
- Clustering without selection of dimensions important for classification is less expected to display this separation

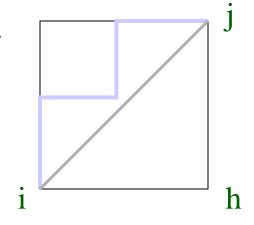
Metric spaces

Positivity Reflexivity

$$d_{ij} > d_{ii} = 0$$

$$d_{ij} = d_{ji}$$

$$d_{ij} \leq d_{ih} + d_{hj}$$



Figures removed due to copyright reasons.

Please see:

Khan, J., et. al. "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks." *Nat Med* 7, no. 6 (June 2001): 673-9.

k-means clustering (Lloyd's algorithm)

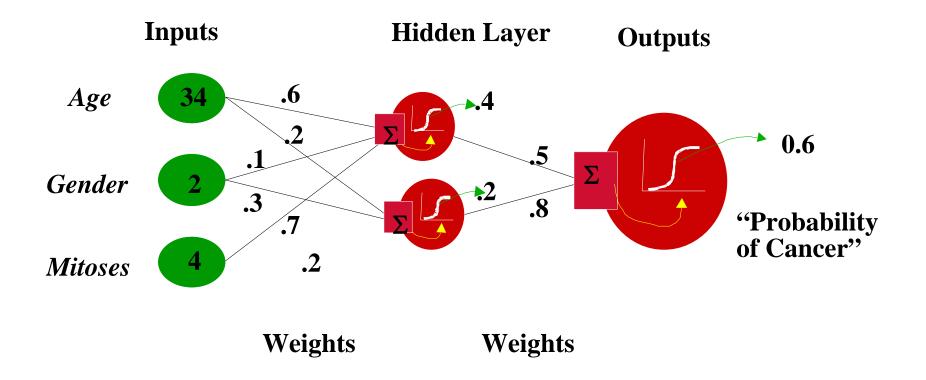
- 1. Select *k* (number of clusters)
- 2. Select *k* initial cluster centers c_1, \ldots, c_k
- 3. Iterate until convergence: For each *i*,
 - 1. Determine data vectors v_{i1}, \dots, v_{in} closest to c_i (i.e., partition space)
 - 2. Update c_i as $c_i = 1/n (v_{il} + ... + v_{in})$

Figures removed due to copyright reasons.

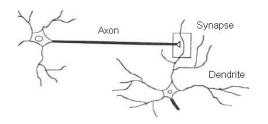
Please see:

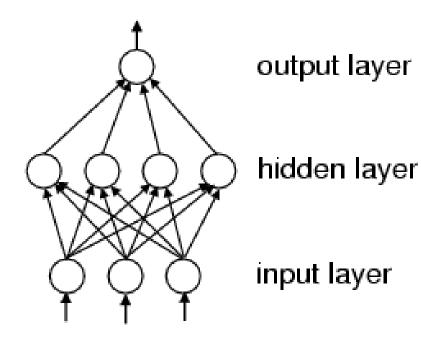
Khan, J., et. al. "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks." *Nat Med* 7, no. 6 (June 2001): 673-9.

Neural Networks



Neural Networks



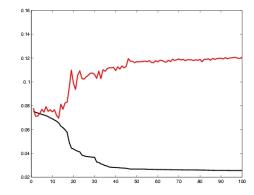


Work well even with nonlinearly separable data

Overfitting control:

•Few weights

- •Little training
- •Penalty for large weights



Backpropagation algorithm

Classification

cross-entropy

Regression

sum-of-squares

sigmoidal neuron

sigmoidal neurons

linear neurons

sigmoidal neurons

linear neurons

Some reminders

- Simple models may perform at the same level of complex ones for certain data sets
- A benchmark can be established with these models, which can be easily accessed
- Simple rules may have a role in generalizing results to other platforms
- No model can be proved to be best, need to try all