Databases in Clinical Research

Overview

- Background: History and utility of clinical data repositories
- Strategies: Integrating the outcomes tracking database into clinical workflow
- Brigham and Women's Catheterization Laboratory Database: Architecture, Advances, Limitations
- Examples of Data Exploration: Risk models, "drilling down", and device safety monitoring

Need for Clinical Data Repositories

- Randomized clinical trials are gold standard for testing a hypothesis, but there are significant limitations:
 - generalizability
 - timeliness
 - cost \$\$\$

Cost of Randomized Clinical Trials

Estimated cost of RCT:

Drug Trial: \$15,000/patient

1000 patient trial: \$15MM

 Simply too expensive to answer every relevent clinical question with prospective blinded RCT.

Clinical Registries

 While RCT's test hypotheses, the real world of clinical practice is a registry.

All patients (generalizability)

Dynamic (timeliness)

 Significant Potential cost savings when automated clinical registry (database system) bundled with other functional requirements

clinical reporting, billing, inventory control

History of Successful Clinical Registries

- Duke Database
- Washington Heart Center
- Beth Israel Hospital, Boston
- Cleveland Clinic
- Mayo Clinic
- Massachusetts General Hospital

Why Clinical Cardiology?

- High volume clinical sites
- High event rates death, MI, revascularization, rehospitalization, etc.
- High profile
- High cost to study

Applications of Clinical Databases:

Clinical Research:

Retrospective "Hypothesis Generator"

Data mining

Prospective automated CRF

Risk prediction modeling

Quality Assurance:

Interprovider variability

Benchmark review – ACC NCDR

- Business and Operations Review Turnover times, referral patterns
- Regulatory Requirements State DPH

Overview

- Background: History and utility of clinical data repositories
- Strategies: Integrating the outcomes tracking database into clinical workflow
- Brigham and Women's Catheterization Laboratory
 Database: Architecture, Advances, Issues
- Examples of Data Exploration: Risk models, "drilling down", and device safety monitoring

Strategies for Maintaining Clinical db

Three Strategies:

- Prospective/retrospective off-line chart review
- Data extraction w/ supplemental chart review
- Complete integration into electronic record system

Clinical Database Strategies:

Parallel Chart Review

- -- independent of clinical process
- -- focus on data quality
- -- maintain current workflow
- -- requires team of coders
- -- COST \$\$\$

Hybrid Strategy

- Fully Integrated
- -- purely prospective
- -- integral part of routine workflow
- -- lowest cost (??)
- -- data quality issues
- -- data management

Integration Dimensions:

Workflow

Multi-Use Function of Clinical Cath Lab Databases:

- Clinical Outcomes Tracking Database:
 - Retrospective Clinical Research
 - **Quality Assurance**
 - Administrative reporting
- Clinical report generation (structured reporting; transcription templates)
- Technical and Professional Billing
- Inventory Management
- Increased complexity of database with each additional functional layer.

Information Flow Integrated Into Care Process

Evolutionary Growth in DB Design: BWH CCL DB

Functions Supported in Cath Lab:

- Clinical Documentation
- Clinical Outcomes Database (Research)
- Technical Billing
- Professional Billing
- Inventory Management
- Clinical/Quality Improvement Database
- Administrative Database Functionality
- State Reporting (DPH)

DB: Core to Supporting Multiple Functions

- Clinical Documentation
- Technical Billing
- Professional Billing
- Inventory Management
- Clinical/Quality Improvement Database
- Procedure Scheduling
- Administrative Database Functionality
- Image archiving

Tension within Medical Informatics

Clinical Documentation

Database Requirements

- -- structure data entry
- -- limited vocabulary
- -- fixed meaning
- -- no free text entry
- -- focus on consistency

Clinical Communication Requirements

- -- unstructured
- -- unlimited vocabulary
- -- variable meaning
- -- frequent revision
- -- focus on interpretation

Overview

- Background: History and utility of clinical data repositories
- Strategies: Integrating the outcomes tracking database into clinical workflow
- Brigham and Women's Catheterization Laboratory Database: Architecture, Advances, Issues
- Examples of Data Exploration: Risk models, "drilling down", and device safety monitoring

System Architecture: Phase I

System Architecture: Phase I

System Architecture: Phase II

System Architecture: Phase II

System Architecture: Phase III

System Architecture: Phase IIIb

Relational DB Schema: Overview

Relational DB Schema: Patient

Relational DB Schema: Hospitalization

Relational DB Schema: Procedure

Relational DB Schema: Lesion Treated

Overview

- Background: History and utility of clinical data repositories
- Strategies: Integrating the outcomes tracking database into clinical workflow
- Brigham and Women's Catheterization Laboratory
 Database: Architecture, Advances, Issues
- Examples of Data Exploration: Risk models, "drilling down", and device safety monitoring

Applications of BWH CCL Database

Risk Prediction Model Development

Drilling Down – Novel Risk Factors

Retrospective Device Safety Analysis

Monthly QA – Cath Lab M&M

Operations Management

Risk Models: Background

Unadjusted Mortality Rates – Published 1999-2000

```
NY State PTCA Registry Model: 0.9%
NNE Cooperative Model: 1.1% 0.6%
Holmes et al (Mayo Clinic): 1.6%
Moscucci et al (Univ. Michigan): 3.3% 3.4%
```

- Risk prediction models help adjust for severity of illness
 - providers assess quality of care improve process
 - State / public compare institutions and providers
 - researchers assess effect of changes in care

See Hannan JAMA 277(11); Holmes Circ 102:517; Moscucci JACC 34(3); O'Conner JACC 34(3)

Logistic and Score Models for Death

Logistic Regression Model

Age > 74yrs
B2/C Lesion
Acute MI
Class 3/4 CHF
Left main PCI
Stent Use
Cardiogenic Shock
Unstable Angina
Tachycardic
Chronic Renal Insuf.

Odds Ratio	p-value
2.53	0.01
1.93	80.0
1.83	0.20
8.14	0.00
6.59	0.02
0.50	0.08
8.33	0.00
1.69	0.17
2.77	0.04
2.71	0.05

Logistic and Score Models for Death

Logistic Regression Model

Age > 74yrs
B2/C Lesion
Acute MI
Class 3/4 CHF
Left main PCI
Stent Use
Cardiogenic Shock
Unstable Angina
Tachycardic
Chronic Renal Insuf.

Odds Ratio	p-value
2.53	0.01
1.93	0.08
1.83	0.20
8.14	0.00
6.59	0.02
0.50	0.08
8.33	0.00
1.69	0.17
2.77	0.04
2.71	0.05

Logistic and Score Models for Death

Logistic Regression Model

Age > 74yrs
B2/C Lesion
Acute MI
Class 3/4 CHF
Left main PCI

Stent Use

Cardiogenic Shock Unstable Angina Tachycardic Chronic Renal Insuf.

Odds Ratio	p-value
2.53	0.01
1.93	0.08
1.83	0.20
8.14	0.00
6.59	0.02
0.50	0.08
8.33	0.00
1.69	0.17
2.77	0.04
2.71	0.05

Logistic and Score Models for Death

Logistic Regression Model

Risk Score Model

Age > 74yrs
B2/C Lesion
Acute MI
Class 3/4 CHF
Left main PCI

Stent Use

Cardiogenic Shock Unstable Angina Tachycardic Chronic Renal Insuf.

Odds Ratio	p-value
2.53	0.01
1.93	0.08
1.83	0.20
8.14	0.00
6.59	0.02
0.50	0.08
8.33	0.00
1.69	0.17
2.77	0.04
2.71	0.05

Beta coeff	Risk value
0.927	2
0.659	1
0.601	1
2.097	4
1.886	3
-0.683	-1
2.120	4
0.522	1
1.020	2
0.996	2

ROC Curves: Death Models

Validation Set: 1460 Cases

See Resnic et al. Am J. Cardiol 2001 Jul 1:88(1):5-9

Model Building: Artificial Neural Networks

 Artificial Neural Networks are non-linear mathematical models which incorporate a layer of hidden "nodes" connected to the input layer (covariates) and the output.

Model Building: Artificial Neural Networks

 Artificial Neural Networks are non-linear mathematical models which incorporate a layer of hidden "nodes" connected to the input layer (covariates) and the output.

Model Building: Artificial Neural Networks

 Artificial Neural Networks are non-linear mathematical models which incorporate a layer of hidden "nodes" connected to the input layer (covariates) and the output.

ROC Curves: Death Models Validation Set: 1460 Cases

See Resnic et al. Am J. Cardiol 2001 Jul 1:88(1):5-9

Risk Score of Death: BWH Experience Unadjusted Overall Mortality Rate = 2.1%

See Resnic et al. *Am J. Cardiol* 2001 Jul 1:88(1):5-9

Applications of BWH CCL Database

Risk Prediction Model Development

Drilling Down – Novel Risk Factors

Retrospective Device Safety Analysis

Monthly QA – Cath Lab M&M

Operations Management

MACE Models: Impact of No-Reflow

Logistic Regression Model

Risk Score
Model

Age > 74yrs
B2/C Lesion
Acute MI
Class 3/4 CHF
Left main PCI
Stent Use
Cardiogenic Shock
USA
Tachycardic
No Reflow
Unscheduled
Chronic Renal Insuff.

Odds Ratio	p-value
1.40	0.16
2.56	0.00
2.99	0.00
3.61	0.00
2.30	0.28
0.58	0.03
3.33	0.01
2.69	0.00
1.36	0.44
2.90	0.01
1.49	80.0
1.58	0.23

0.337	0
0.939 1.096 1.283 0.831 -0.539 1.202 0.989 0.311 1.044 0.396 0.457	0 2 2 3 2 -1 3 2 0 2

No-Reflow: Angiographic Case Study

63yo male 4yrs s/p 4v CABG.

Presents with NQWMI W/ lateral ST depress

No Reflow: BWH Experience 1997-2000

Risk of In-Hospital Complication

See Resnic et al. Am Heart J. In press.

TIMI Flow Rates Improved Significantly

See Resnic et al. Am Heart J. In press.

Lack of Effective Treatment: BWH Experience

Risk of Death or Myocardial Infarction

See Resnic et al. Am Heart J. In press.

Applications of BWH CCL Database

Risk Prediction Model Development

Drilling Down – Novel Risk Factors

Retrospective Device Safety Analysis

Monthly QA – Cath Lab M&M

Operations Management

Patients receiving a closure device experienced a 44% reduction in vascular complications.

See Resnic et al. Am J. Cardiol. 2001 Sep 1:88(5):493-496.

This effect was preserved in those patients receiving gp 2b3a inhibitors.

See Resnic et al. Am J. Cardiol. 2001 Sep 1:88(5):493-496.

Applications of BWH CCL Database

Risk Prediction Model Development

Drilling Down – Novel Risk Factors

Retrospective Device Safety Analysis

Monthly QA – Cath Lab M&M

Operations Management

Coronary Procedures by Month

Planned vs. Ad Hoc PCI

Internal vs. External MD Volume

Post-Procedural Events for July, 2002

•Significant events *reported* during July, 2002:

```
Death 3
```

Stroke 1

CABG 1 (perforation of LCx)

MI* 6 (1 SAT)

TVR 2

Vascular 7 (1 transfusion reported, 1 PSA req. surg)

Renal 3

CHF 1

^{*} MI defined as total CK-MB>3x ULN in patient w/o index AMI.

Applications of BWH CCL Database

Risk Prediction Model Development

Drilling Down – Novel Risk Factors

Retrospective Device Safety Analysis

Monthly QA – Cath Lab M&M

Operations Management

One-third of total case volume is noted as inpatient source in WITT.

The case volume is distributed according the usual 80/20 rule. Nearly 80% of cases is referred from 20% of the MDs.

Rules for Designing an Outcomes Database

- Understand workflow in detail. Identify immutable points (most of these depend on perspective).
- Incremental design identify successful milestones
- Open architecture use ODBC compliant relational databases as backbone

Systems integration is most complex challenge

- Goal of distributed information availability.
- Identify implementation team. Responsibilities, project plan, regular operational meeting.

Acknowledgements

Cardiovascular Division

Jeff Popma, MD

Andrew Selwyn, MD

Campbell Rogers, MD

Charles Lin, MBA

Benjamin Paul

Decision Systems Group

Lucila Ohno-Machado, MD PhD

Robert Greenes, MD PhD

Aziz Boxwala, MD PhD

Partners Information Systems

Mark Nightingale

Thank You!