Fuzzy and Rough Sets Part I

Decision Systems Group Brigham and Women's Hospital, Harvard Medical School

Aim

- Present aspects of fuzzy and rough sets.
- Enable you to start reading technical literature in the field of AI, particularly in the field of fuzzy and rough sets.
- Necessitates exposure to some formal concepts.

Overview Part I

- Types of uncertainty
- Sets, relations, functions, propositional logic, propositions over sets
 - Basis for propositional rule based systems

Overview Part II

- Fuzzy sets
- Fuzzy logic
- Rough sets
- A method for mining rough/fuzzy rules
- Uncertainty revisited

Uncertainty

- What is uncertainty?
 - The state of being uncertain. (Webster).
- What does uncertain mean?
 - Not certain to occur.
 - Not reliable.
 - Not known beyond doubt.
 - Not clearly identified or defined.
 - Not constant. (Webster).

Uncertainty

- Ambiguity: existence of one-to-many relations
 - Conflict: distinguishable alternatives
 - Non-specificity: indistinguishable alternatives
- Fuzziness:
 - Lack of distinction between a set and it's complement (Yager 1979)
 - Vagueness: nonspecific knowledge about lack of distinction

Uncertainty

Klir/Yuan/Rocha:

Model

- What is a model?
 - A mathematical representation (idealization) of some process (Smets 1994)
- Model of uncertainty:
 - A mathematical representation of uncertainty

Sets: Definition

- A set is a collection of elements
 - If i is a member of a set S, we write $i\hat{I}$ S, if not we write $i\hat{I}$ S
 - $-S = \{1,2,3,4\} = \{4,1,3,2\} \text{explicit list}$
 - $-S = \{i \hat{I} Z \mid 1 \hat{E} i \hat{E} 4\} defining condition$
 - Usually: Uppercase letters denote sets, lowercase letters denote elements in sets, and functions.

Sets: Operations

• $A = \{1,2\}$, $B = \{2,3\}$ – sets of elements union:

$$A \hat{E} B = \{1,2,3\} = \{i \mid i \hat{I} A \text{ or } i \hat{I} B\}$$

Intersection:

$$A \ \mathcal{C} B = \{2\} = \{i \mid i \ \hat{I} \ A \text{ and } i \ \hat{I} \ B\}$$

Difference:

$$A - B = \{1\} = \{i \mid i \hat{I} \mid A \text{ but not } i \hat{I} \mid B\}$$

Sets: Subsets

A set B is a subset of A if and only if all elements in B are also in A.
 This is denoted
 B f A

• $\{1,2\}$ **İ** $\{2,1,4\}$

Sets: Subsets

- The *empty set* \emptyset , containing nothing, is a subset of *all* sets.
- Also, note that $A \hat{I} A$ for any A.

Sets: Cardinality

 For sets with a finite number of elements, the cardinality of a set is synonymous with the number of elements in the set.

•
$$|\{1,2,3\}| = 3$$

$$\bullet \mid \varnothing \mid = 0$$

Cartesian Product: Set of Tuples

- (a,b) is called an ordered pair or tuple
- The cartesian product A ´ B of sets A and B, is the set of all ordered pairs where the first element comes from A and the second comes from B.

```
A \cap B = \{(a,b) \mid a \hat{I} \mid A \text{ and } b \hat{I} \mid B\}
```

•
$$\{1,2\}$$
 $\{3,2\}$ = $\{(1,3),(1,2),(2,3),(2,2)\}$

Relations: Subsets of Cartesian Products

- A relation R from A to B is a subset of A ´ B
- $\bullet R I A B$
- { (1,2),(2,3)} is a relation from {1,2} to {3,2}
- {(1,3)} is also a relation from {1,2} to {3,2}

Binary Relations

- A relation from a set A to itself is called a binary relation, i.e., R I A A is a binary relation.
- Properties of a binary relation R:
 - (a,a) \hat{I} R for all a \hat{I} A,
 - R is reflexive
 - (a,b) \hat{I} R implies (b,a) \hat{I} R,
 - R is **symmetric**
 - $-(a,b),(b,c) \hat{I} R \text{ implies } (a,c) \hat{I} R,$
 - R is transitive

Relations: Equivalence and Partitions

- A binary relation on A is an equivalence relation if it is reflexive, symmetric and transitive.
- Let $R(a) = \{b \mid (a,b) \hat{I} R\}$

Relations: Equivalence and Partitions

- If R is an equivalence relation, then for a,b \hat{I} R, either
 - -R(a) = R(b) or
 - $-R(a) \ C R(b) = AE$
 - R(a) is called the equivalence class of a under R
- The different equivalence classes under R of the elements of A form what is called a partition of A

Functions: Single Valued Relations

- $R \hat{I} \{a,b,c\} ' \{1,2\}$
- $R(a) = \{1\}$
- $R(b) = \{2\}$
- $R(c) = \emptyset$
- |R(x)|£ 1 for all x, R is single valued
- •Is R' on the right single valued?

$$R' = \{(1,0),(2,1)\}$$

Functions: Partial and Total

- A single valued relation is called a partial function.
- A partial function f from A to B is total if |f(a)| = 1 for all $a \hat{I} A$. It is then said to be defined for all elements of A. Usually a total function is just called a function.

Functions: Partial and Total

- If a function f is from A to B, A is called the domain of f, while B is called the co-domain of f.
- A function f with domain A and codomain B is often written

f: A ® B.

Functions: Extensions

• A partial function g such that $f \hat{I} g$ is called an extension of f.

HST 951 Spring 2003

Characteristic functions: Sets

 A function f: A ® {0,1} is called a characteristic function of

$$S = \{ a \, \hat{I} \, A \mid f(a) = 1 \}.$$

• SÍA

Characteristic functions: Sets

Propositional Logic

• Proposition: statement that is either *true* or *false*.

- "This statement is false." (Eubulides)
- If pain and ST-elevation, then MI.

 Patient is in pain and has ST-elevation.

 What can we say about the patient?

Propositional language

- Language:
 - An infinite set of variables

$$V = \{a, b,\}$$

- -A set of symbols { ~, v, (,)}
- Any string of elements from the above two sets is an expression
- An expression is a *legal* (well formed) formula (wff) or it is not

Propositional Syntax

- wff formation rules:
 - A variable alone is a wff
 - If α is a wff, so is $-\alpha$
 - If α and β are wff, so is $(\alpha \vee \beta)$

- Is (a v ~~~b) a wff?
- Is a v b a wff?

Propositional Operators

Truth functional

Negation (not): ~

	1
0	1
1	0

Disjunction (or): ν
 (α ν β)

V	0	1
0	O	1
1	1	1

Semantics

- A setting s: V ® {0,1} assigning each variable either 0 or 1, denoting true or false respectively
- An Interpretation I_V : wff @ {0,1} used to compute the truth value of a wff

Semantics

Variables

$$I(a) = s(a)$$

Composite wff:

$$I(-\alpha) = -I(\alpha)$$

$$I(\alpha \lor \beta) = I(\alpha) \lor I(\beta)$$

Semantics Example

$$I(\sim(\sim a \ v \sim b)) = \sim I(\sim a \ v \sim b)$$

= $\sim(\sim I(a) \ v \sim I(b))$
= $\sim(\sim s(a) \ v \sim s(b))$

If we let
$$s(a) = 1$$
, $s(b) = 0$
 $I(\sim(\sim a \ v \sim b)) = \sim(\sim 1 \ v \sim 0)$
 $= \sim(0 \ v \ 1) = \sim 1 = 0$

New Operator: And

• Conjunction (and): $^{\wedge}$ $(\alpha ^{\wedge} \beta) = ^{\wedge}(^{\sim}\alpha \vee ^{\sim}\beta)$

^	O	1
0	0	0
1	0	1

New Operator: Implication

• Implication (if...then): $(\alpha \otimes \beta) = (-\alpha \vee \beta)$

R	O	1
O	1	1
1	O	1

New Operator: Equivalence

Equivalence: ↔

$$(\alpha \leftrightarrow \beta) = (\alpha \otimes \beta) \wedge (\beta \otimes \alpha)$$

\leftrightarrow	O	1
O	1	0
1	0	1

Semantics Of New Operators

Conjunction:

$$I(\alpha \land \beta) = I(\alpha) \land I(\beta)$$

Implication:

$$I(\alpha \otimes \beta) = \sim I(\alpha) \vee I(\beta)$$

• Equivalence:

$$I(\alpha \leftrightarrow \beta) = I(\alpha \otimes \beta) \land I(\beta \otimes \alpha)$$

Propositional Consequence: A Teaser

- s = "Alf studies"
- g = "Alf gets good grades"
- t = "Alf has a good time"
 - (s ® g)
 - $-(\sim s \otimes t)$
 - $-(\sim g \otimes \sim t)$

 $(-s v g) ^ (s v t) ^ (g v - t) = g ^ (s v t)$ At least Alf gets good grades.

Propositions Over a Set

- Propositions that describe properties of elements in a set
- Modeled by characteristic functions
- Example: even: N \otimes {0,1} even(x) = (x+1) modulo 2 even(2) = 1 even(3) = 0

Truth Sets

Truth set of proposition over U
 p: U ® {0,1}

$$T_U(p) = \{x \mid p(x) = 1\}$$

• Example $T_N(even) = \{2,4,6,...\}$

Semantics

- Semantics are based on truth sets
 - $-I_{U}(p(x)) = 1$ if and only if x in $T_{U}(p)$
- Following previous definitions, we have that
 - $-T_{U}(\sim p) = U T_{U}(p)$
 - $-T_U(p \vee q) = T_U(p) \cup T_U(q)$
 - $-T_{U}(p \land q) = T_{U}(p) \cap T_{U}(q)$

Semantics Example

- Two propositions over natural numbers
 - even
 - prime

```
T_N(\text{even } ^ \text{prime}) = T_N(\text{even}) \cap T_N(\text{prime})
= {2}
I_N(\text{even}(x) ^ \text{prime}(x)) = 1 \text{ if and only if } x=2
```

Inference: Modus Ponens

Modus Ponens (rule of detachment):

```
\frac{\alpha}{\alpha \otimes \beta}

Ted is cold, \frac{\beta}{\beta}
If Ted is cold, he shivers
Ted shivers
```

An "implication-type rule application" mechanism

Next Time

- How to include uncertainty about set membership
- Extend this to logic
- A method for mining propositional rules