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Overview

e Fuzzy sets
e Fuzzy logic and rules
e Rough sets and rules

e An example of a method for
mining rough/fuzzy rules

e Uncertainty revisited
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Crisp Sets

e A set with a characteristic function
IS called crisp

e Crisp sets are used to formally
characterize a concept, e.g., even
numbers

e Crisp sets have clear cut
boundaries, hence do not reflect
uncertainty about membership
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Fuzzy Sets

e Zadeh (1965) introduced “Fuzzy Sets”
where he replaced the characteristic
function with membership

®*Cs:U® {0,1} is replaced by
ms: U® [0,1]
e Membership is a generalization of

characteristic function and gives a
“degree of membership”

e Successful applications in control
theoretic settings (appliances, gearbox)
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Fuzzy Sets

e Example: Let S be the set of
people of normal height

e Normality Is clearly not a crisp
concept



Crisp Characterizations of
Fuzzy Sets

e Support in U
Support ,(S) = {x1 U | ms(x) > 0}
e Containment
Al B if and only if
m,(X) £ mg(x) forall x I U
e There are non-crisp versions of the
above
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Fuzzy Set Operations

e Union
Mpeg(X) = Max(ma(X), Mmg(X))
e |[ntersection
Mpce(X) = MIN(M4(X), Mg(X))
e Complementation
My A(X) = 1 - mu(X)
e Note that other definitions exist
too
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Fuzzy Memberships
Example

M, (X) Mg (X)




Fuzzy Union Example

My (X)
A

M, (X) Mg (X)




Fuzzy Intersection
Example

Mpc(X)
A

M, (X) Mg (X)




Fuzzy Complementation
Example

my_a(X)
A

1

m,(X) my_a(X)




Fuzzy Relations

e The fuzzy relation R between Sets
X and Y is a fuzzy set In the
Cartesian product X' Y

*m;: XY ® [0,1] gives the degree
to which x and y are related to
each other In R.



Composition of Relations

e Two fuzzy relations R in X’ Y and S
In Y Z can be composed into R°S
iIn X" Z as

Mg.s(X,2) = max,; y\[min[mg(x,y), mg(y,z)]]



Composition Example




Probabilities of Fuzzy

Events
e “Probability of cold weather
tomorrow”

e U= {X;, Xy, ..., X, }, P IS A
probability density, A Is a fuzzy set
(event) in U

P(A)= & m, (x)p(x)



Defuzzyfication

e FInding a single representative for

a fuzzy set Ain U = {x]iin {1,..n}}
e Max: x in U such that m,(x) iIs maximal
e Center of gravity:

O n
a i=1 ximA (‘xl )
O n

a._ m,(x)




Alpha Cuts

e Alis a fuzzy set in U

e A, = {X | m,(X)? a } Is the a-cut of
Ain U

e Strong a-cut Is
A, = X I my(X)=a }

e Alpha cuts are crisp sets

HST 951 Spring 2003



Fuzzy Logic

e Different views

— Foundation for reasoning based on
uncertain statements

— Foundation for reasoning based on
uncertain statements where fuzzy set
theoretic tools are used (original Zadeh)

— As a multivalued logic with operations
chosen in a special way that has some fuzzy
Interpretation
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Fuzzy Logic

e Generalization of proposition over
a set

eletc:U ® {0,1} denote the
characteristic function of the set S

e Recall that In “crisp” logic

1(P(X)) = P(X) = Cy@py(X)
where p Is a proposition and T(p) Is
the corresponding truth set
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Fuzzy Logic

e We extend the proposition
p:U® {0,1}
to be a fuzzy membership
p:U® [0,1]

e The fuzzy set associated with p

corresponds to the truth set T(p) and
p(Xx) Is the degree of truth of p for x

e We extend the interpretation of logical
formulae analogously to the crisp case
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Fuzzy Logic Sematics

e Basic operations:
—1(p(X)) = p(X)
—I1(a v b) = max(1(a),l(b))
—1(a ™ b) = min(1(a), (b))
—1(~a) =1 - 1(a)



Fuzzy Logic Sematics

e Implication:

—Kleene-Dienes
I(a ® b) = max(l(—a),l(b))

e Dubois and Prade (1992) analyze
other definitions of Implications
—Zadeh

I(a ® b) = max(lI(—a),min(1(a), 1(b)))
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Fuzzy Rules

e “If xIn A thenyin B” iIs a relation R
between A and B

e Two model types
— Implicative: (xin A® y in B) is an upper bound

— Conjunctive: (x iIn Ay in B) Is a lower
bound

— Crisp motivation:
Ca(X) ™ Cg(Y) £ Cr(X,y) £ (1 -Cxa(x)) v Cg(Yy)
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Conjunctive Rule application

e R:UU® [0,1] is arule
If p(x) then q(y)

e Using a generalized Modus Ponens
A

A® B

B’

we get that

B =A"°R

B'(y) = max,[min[A’(X),R(x,y)]]
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Rough Sets

e Pawlak 1982

e Approximation of sets using a
collection of sets.

e Related to fuzzy sets (Zadeh
1965), in that both can be viewed
as representations of uncertainty
regarding set membership.
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Rough Set: Set Approximation

C

C, Cj C,
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Rough Set: Set Approximation




Rough Set: Set Approximation

e Approximation of D by {c,, ¢,, c,, C,}:
— C, definitely outside
— C, definitely inside: lower approximation
— ¢, E ¢, are boundary
— Cc, E c, E c,are upper approximation
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Rough Set: Set Approximation

e Given a collection of sets c={c,, c,, C,,...}
and a set D, we define:

— Lower approximation of D by C,
D* =UC, such that C,C D = C,
—Upper approximation of D by C,
DY =UC, such that C.C D A
—Boundary of D by C,
D, =D" - D,
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Rough Set: Definition

e A set D is rough with respect to a
collection of sets C if it has a non-
empty boundary when
approximated by C. Otherwise It Is
Crisp.



Rough Set: Information System

e Universe U of elements, e.qg., patients.

e Set A of features (attributes), functions f
from U to some set of values V..

e (U,A) — information system

Object no.

1 U={123456789)

A ={a,b,cd}
V,=V,=V.=V,={01}

a

O~ 200 - ola

Y e el =N EG G Ye] ke
O OO OO A2~ ~I0

e\ e lleo e lle) [

©O© o0 NOO TR~ WDN
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Rough Sets: Partition of U

« E={(,j))T U U] abc(i) = abc(j)},

equivalence relation on U

= E(1) =A{1} =G
- E(2) =ER) =E@) ={2,3,4} =C,
= E(3) =E(6) =1{56} =G5

 E(7V) =E(B) =EQ) ={7.,8,9} =C,

1

3\ T~~_
2 5—6 | 9
4/ 8/
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Object no. abc d
1 (0,0,1) 0
2 (0,1,1) 1
3 (0,1,1) 0
4 (0,1,1) 0
5 (1,0,0) 1
6 (1,0,0) 1
7 (1,1,0) 1
8 (1,1,0) 1
9 (1,1,0) 0




Rough Sets:
Approximating D

DY ={23,456,789'=C,EC,E C,
D, ={5,6) =C,
D" - D, ={234789'=C,EC,
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Rough Sets: Approximate
membership d

41y = DS ED)
E()|

- d(1) =0
- d(2) = d(3) = d(4) = 1/3
- d(5) = d(6) = 1

- d(7) = d(8) = d(9) = 2/3




Rough Sets: Data Compression

Information: Partition given by eqguivalence.

Find minimal sets of features that preserve
Information in table.

Object no. a b C d Object no. a b d
1 0 0 1 0 1 0 0 0
2 0 1 1 1 2 0 1 1
3 0 1 1 0 3 0 1 0
4 0 1 1 0 4 0 1 0
5 1 0 0 1 S 1 0 1
6 1 0 0 1 6 1 0 1
7 1 1 0 1 / 1 1 1
8 1 1 0 1 8 1 1 1
9 1 1 0 0 9 L L 0
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Rough Sets: Discernibility Matrix

® I\/IA — {mij}1 A= {a!b’C}
- mi={al Ala(*® a(l),ki C IT C}

Objectno.| a b C

{} {b} {a,c} {a,b,c} 1 0 0 1

M — {b} {} {a,b,C} {a=C} 2,3,4 0 1 1
4 {ac}  fabc |} {b} 56 | 1 0 0
{abc} {ac} {b} { 789 1 1 0

C = {{b}.{a,c}{a,b,c}} — set of non-empty entries of M,
Minimal sets that have non-empty intersection with all
elements of C are {a,b} and {b,c} (Finding: Combinatorial)
These are called reducts of (U,A)

A reduct is a minimal set of features that preserves the
partition.
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Rough Sets: Extending d

e Problem: we only have 2be 3
the d value for 4 of 8 (0,0,1) 0
possible input values. (0,1,1) 1/3
What is d(1,1,1) ? (1,0,0) 1

_ (1,1,0) 2/3

e By using compressed data
that preserves the ab q
partition, we cover more (0,0) 0
of the feature space. All of (0,1) 1/3
It in this case. d(1,1,1) = (1,0) 1

d(1,1) = 2/3. L (1) 2/3
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Rough Sets: Extending d

e Problem: extension not unique abc d
(and can extend to different (0,0,1) 0
parts of feature space). (0,1,1) 1/3

e d(1,1,1) =d(1,1) = 1/3. (1,0,0) 1

e Possible solution: generate (1,1,0) 2/3
several extensions and combine
by voting. Generating all bc d
extensions is combinatorial. (0,0) 1

e d(1,1,1) = (2/3 + 1/3)/2 =1/2 (0,1) 0

(1,0) 2/3
| (1,1 1/3
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Rough Sets: Classification rules

Object no. a b C d
1 0 0 1 0 ab d
2 0 1 1 1
3 0 1 1 0 (0,0) 0
S T T I N X N
6 1 0 0 1 (1,0) 1
7 1 1 0 1 | (1) 2/3
8 1 1 0 1
9 1 1 0 0

Rules with right hand side support numbers:

a(0) AND b(0) => d(0) (1)
a(0) AND b(1) == d(1) OR d(0) (1, 2)
a(1) AND b(0) => d(1) (2)

a(1) AND b(1) => d(1) OR d(0) (2, 1)
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A Proposal for Mining
Fuzzy Rules

e Reclipe:
1. Create rough information system by
fuzzy discretization of data
2. Compute rough decision rules

3. Interpret rules as fuzzy rules
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Fuzzy Discretization

A, A, ..., A, are fuzzy sets in U
edisc: U® {1,2,...,n}

disc(x) = {i | mAi(x) = max{mAj(x) 1j1 {1.2,..., n}}
e disc selects the index of the fuzzy

set that yields the maximal
membership

e Information system: subject each
attribute value to disc
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Fuzzy Rough Rules: Example

Object no. a d

A,(3.14) = 0.6 1 3.14 0

A;(0.1) =0.3 2 0.1 1
A,(3.14) = 0.5

A,(0.1) =0.8 Object no. a d

1 1 0

2 2 1

If A1 then d=0
If A2 then d=1
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Uncertainty

e Fuzzy sets can be said to model
Inherent vagueness

Bob is "tall" - vagueness in the meaning
of "tall", not in Bob's height

e Rough sets can be said to model
ambiguity due to lack of information

HST 951 Spring 2003



And...

e Thank you for your attention
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