Bayesian Networks Learning From Data

Marco F. Ramoni
Children's Hospital Informatics Program
Harvard Medical School

HST951 (2003)

Introduction

- * Bayesian networks were originally developed as a knowledge representation formalism, with human experts their only source.
- * Their two main features are:
 - ✓ The ability to represent deep knowledge (knowledge as it is available in textbooks), improving portability, reusability, and modularity.
 - They are grounded in statistics and graph theory.
- * Late '80s, people realize that the statistical foundations of Bayesian networks makes it possible to learn them from data rather than from experts.

Outline

- Learning from data.
- Learning Bayesian networks.
- Learning probability distributions.
- Learning network structures.
 - The classical way.
 - The Bayesian way.
- Searching the space of possible models.
- A couple of examples.
- Lurking variables, hidden variables, and causality.

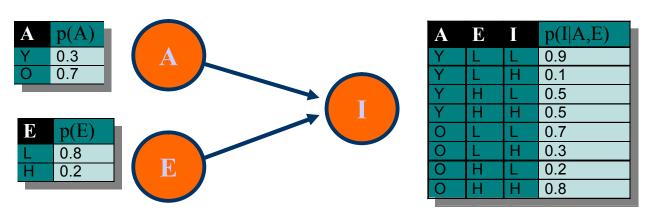
Components

Qualitative: A dependency graph made by:

Node: a variable X, with a set of states $\{x_1, ..., x_n\}$.

Arc: a dependency of a variable X on its parents Π .

Quantitative: The distributions of a variable X given each combination of states π_i of its parents Π .



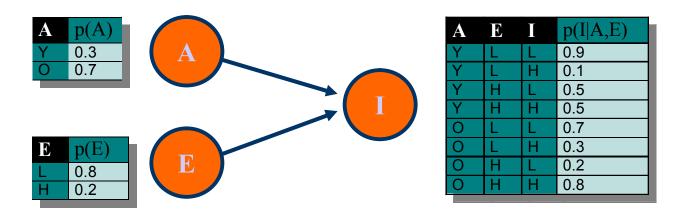
A=Age; E=Education; I=Income

The Age of the Experts

- * The traditional source of knowledge is a human expert.
- * The traditional trick is to ask for a "causal graph" and then squeeze the numbers out of her/him.
- * The acquisition is easier than the traditional one but still... it can be painful.

Learning Bayesian Networks

- * Learning a Bayesian network means to learn.
 - ✓ The conditional probability distributions,
 - ✓ The graphical model of dependencies.



Learning Probabilities

- * Learning of probability distributions means to update a prior belief on the basis of the evidence.
- * Probabilities can be seen as relative frequencies:

$$p(x_i|p_i) = \frac{n(x_i|p_i)}{\dot{a}_i n(x_i|p_i)}$$

* Bayesian estimate includes prior probability:

$$p(x_{i} | p_{i}) = \frac{a_{ij} + n(x_{i} | p_{i})}{\dot{a}_{j} a_{ij} + n(x_{i} | p_{i})}$$

 α_{ij}/α_{i} represents our prior as relative frequencies.

Learn the Structure

- * In principle, the process of learning a Bayesian network structure involves:
 - Search strategy to explore the possible structures; Scoring metric to select a structure.
- * In practice, it also requires some smart heuristic to avoid the combinatorial explosion of all models:
 - ✓ Decomposability of the graph;
 - ✓ Finite horizon heuristic search strategies;
 - ✓ Methods to limit the risk of ending in local maxima.

Model Selection

* There are two main approaches to select a model:

Constraint-based: use conditional independence test to check assumptions of independence and then encode the assumptions in a Bayesian network.

Bayesian: all models are a stochastic variable, the network with maximum posterior probability.

* Bayesian approach is more popular:

Probability: it provides the probability of a model.

Model averaging: predictions can use all models and weight them with their probabilities.

Constraint Based

- * A network encodes conditional independence (CI).
- * A DAG has an associated undirected graph which explicitly encodes these CI assumptions.
- * Associated undirected graph: the undirected graph obtained by dropping the direction of links.
- Moral graph: the undirected graph obtained by.
 - Marring parents of a child.
 - Dropping the directions of the links.
- * How to read this graph?

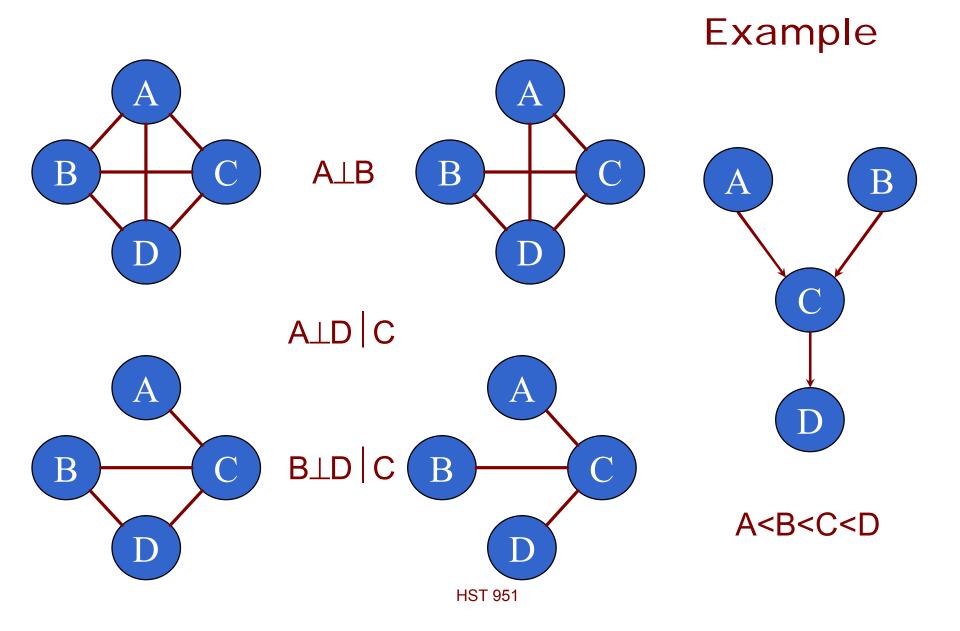
Learning CI Constraints

Search strategy: top-down.

- 1. Start with the saturated (undirected) graph.
- 2. Go link by link and test the independence.
- 3. If independence holds, remove the arc.
- 4. Swing the variables to assess the link direction.

Scoring metric: independence tests.

- Compute the expected frequencies under the assumption that the variables are independent.
- \checkmark Test the hypothesis with some statistics (G^2).
- Assume no structural 0.



Bayesian Model Selection

- * The set of possible models M is a stochastic variable with a probability distribution p(m).
- * We want to select the model m_i with the highest posterior probability given the data \mathbf{D} .
- * We must search all models and find the one with highest posterior probability.
- * We can use Bayes' theorem:

$$p(M \mid D) = \frac{p(D,M)}{p(D)} = \frac{p(D \mid M)p(M)}{p(D)}$$

Scoring Metric

Result: we just need the posterior probability.

First note: all model use the same data:

$$p(m_i|\mathbf{D}) \propto p(\mathbf{D}|m_i)p(m_i).$$

Second note: models have equal prior probability:

$$p(m_i|\mathbf{D}) \propto p(\mathbf{D}|m_i).$$

Conclusion: as we need only a comparative measure, we need just the marginal likelihood.

Assumptions: this scoring metric works under certain assumptions (complete data, symmetric Dirichlet distributions as priors).

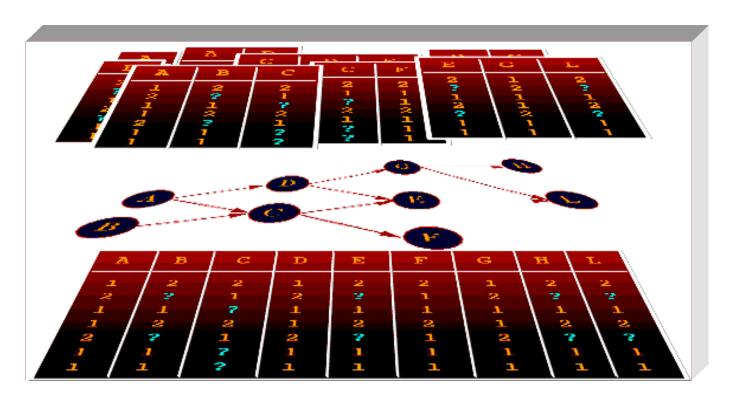
Bayes Factor

- * The marginal likelihood (linear or log) is a measure proportional to the posterior probability.
- * This is good enough to identify the best model but not to say how better is a model compared to another.
- * This may be important to take into account criteria of parsimony or to assess confidence.
- * Bayes factor computes how many times a model is more likely than another as the ratio of their marginal likelihood (or marginal log likelihood):

$$BF(m_i, m_i) = p(\mathbf{D} \mid m_i) / p(\mathbf{D} \mid m_i) \propto p(m_i \mid \mathbf{D}) / p(m_i \mid \mathbf{D}).$$

Factorization

* The graph factorize the likelihood: the "global" likelihood is the product of all local likelihood.

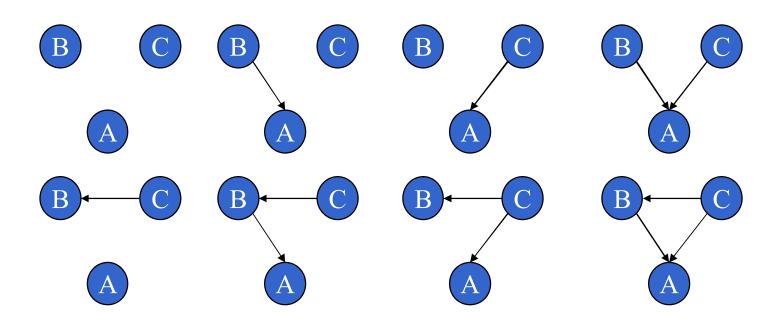


Search

Strategy: Bottom up.

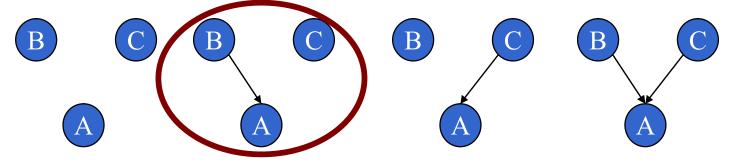
Variables: $X_i < X_j$, if X_i cannot be parent of X_i

Example: A<B<C.

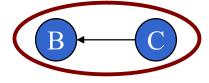


Local Model Selection

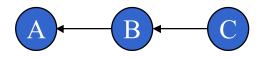
A (possible parents B; C):



B (possible parent C).



The model:



Survival Analysis

Topic: Survival analysis of the Titanic disaster.

Input: 2022 cases on four variables.

- ✓ Class: first, second, third, crew;
- ✓ Gender: male, female;
- ✓ Age: adult, child;
- ✓ Survived: yes, no.

Output: the model of interactions and its likelihood.

The Titanic

Example

Database: Breast Cancer Database (UCI Archive).

Source: University of Wisconsin, W. H. Wolberg.

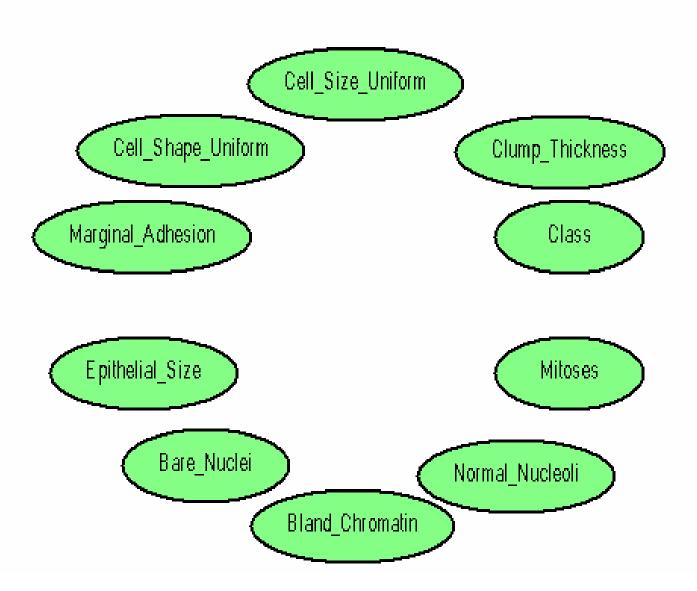
Topic: Breast cancer malignancy classification.

Cases: 699 cases.

Variables: 10 with 10 states + malignancy class:

1	Clump Thickness	6	Bare Nuclei
2	Uniformity of Cell Size	7	Bland Chromatin
3	Uniformity of Cell Shape	8	Bland Chromatin
4	Marginal Adhesion	9	Normal Nucleoli
5	Single Epithelial Cell Size	10	Mitoses

Breast Cancer



Causality

- * What the arrows in a Bayesian network mean?
- * The received definition of causal sufficiency (Suppes, 1970) states that a relation is causal if:
 - ✓ There is correlation between the variables;
 - ✓ There is temporal asymmetry (precedence);
 - ✓ There is no hidden variable explaining correlation.
- * Hidden variables explain statisticians' reluctance to use the word causal.
- * Yule (1899) on the poverty causes in England. Note: "Strictly speaking, for 'due to' read 'associated with'."

Richard III

* Naïve (Aristotelian) causality:

For want of a nail the shoe was lost, For want of a shoe the horse was lost, For want of a horse the rider was lost, For want of a rider the battle was lost, For want of a battle the kingdom was lost, And all for want of a horseshoe nail.

* Modern causality among variables not events:

Galilean equation: d=t².

* When we talk causality, we talk Causal Laws.

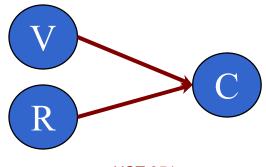
The Enemies

- * The critical problem here is the Simpson's paradox: getting stuck in a local maximum.
- * 674 murder defendants in Florida between 1976 and 1987. Are capital sentences racially fair?

	No Death	Death	Total
White	141 88.1%	19 11.9%	160 49.1%
Disale	149	17.9%	166
Black	89.8%	10.2%	50.9%

Lurking Variable: The Victim

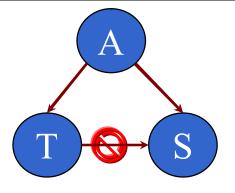
Victim	Defendant	Non Death	Death
White	White	132 87.4%	19 12.6%
White	Black	52 82.5%	11 17.5%
Black	White	9 100%	0 0%
Black	Black	97 94.2%	6 5.8%



Hidden Variables

- * Hidden variables can also prevent independence.
- * Consider a database of children, reporting their T-shirt size and their running speed.

T-shirt	Fast	Slow
Small	0.32	0.68
Large	0.35	0.65

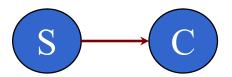


T-shirt	Age	Fast	Slow
Small	<5	0.3	0.7
Large	<5	0.3	0.7
Small	>5	0.4	0.6
Large	>5	0.4	0.6

Does Smoking Cause Cancer?

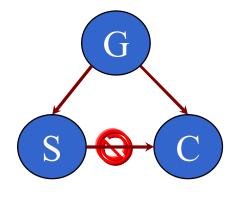
- * In 1964, the Surgeon General issued a report linking cigarette smoking to lung cancer based on correlation between smoking and cancer in observational data.
- * Based on these results, the report claimed causality: If we ban smoking, the rate of cancers will be the same as the one in the non-smoking population.

Note: Observational data are data collected without design (all St Valentine customers of Stephanie's).



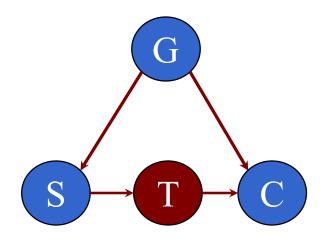
"Of Course Not!"

- * Sir Ronald Fisher said.
- * The correlation can be explained by a model in which there is no causal link between smoking and cancer but an unobserved genotype simultaneously causes cancer and craving for nicotine.
- * Only a controlled experiment (once impossible now also illegal) could have the last word.



Auxiliary Variables

- * The causal model rests on the assumption that smoking affects lungs through tar accumulation.
- * This accumulation is a measurable quantity and can be used as a proxy of the causal dependency.



Measuring the Immeasurable

* Not all factors are measurable:

Measurable: tar concentration, age, income.

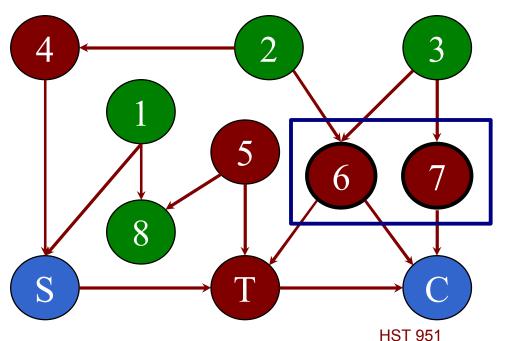
Non measurable: lifestyle, affective state, genotype.

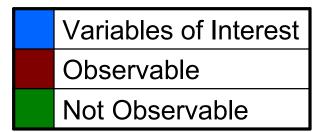
- * Can we use only measurable factors to rule out both measurable and non measurable factors and avoid the appearance of hidden variables and Simpson's paradox with them?
- * This seems to be an experimental design problem but it can be used in observational studies as well.
- * In statistics it is called the Adjustment Problem.

Adjustment: Which factors should be measured (or which experimental conditions should be kept still?).

Problem: Are factor 6 and 7 enough to avoid paradox?

Solution: Model the interaction of factors with a BBN.

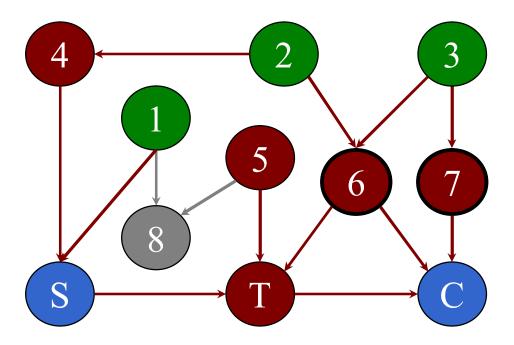




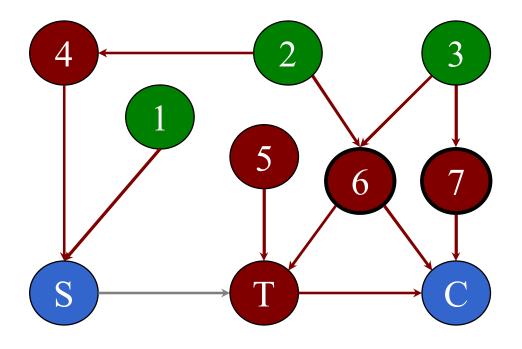
Step 1: Build the model.

Note: Measurements should not be children of S and C.

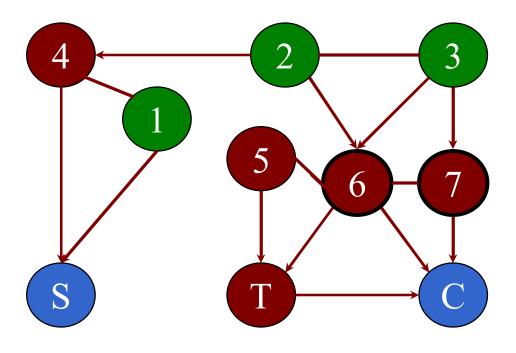
Step 2: Remove all non ancestors of S, C, 6 and 7.



Step 3: Delete all arcs starting from S.

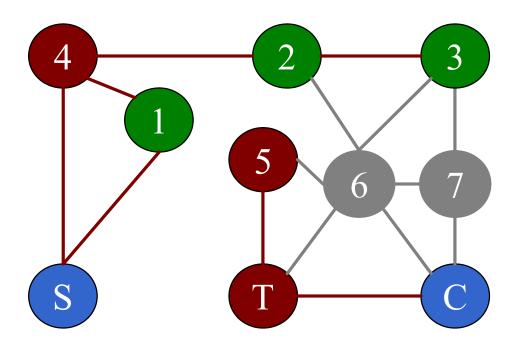


Step 4: Moralize (marry parents of a common child).



Step 5: Drop the directionality of the links (arrows).

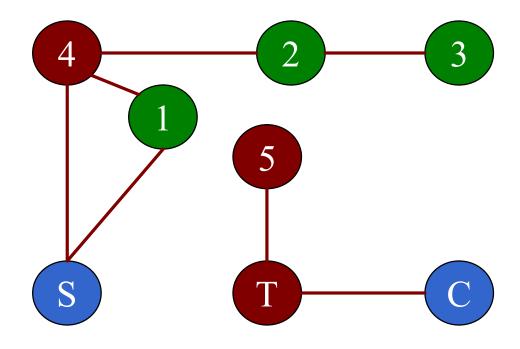
Step 6: Remove the factors to measure (6 and 7).



Solution

Test: If the variables of interest (S and C) are disconnected, then measurements are appropriate.

Answer: Yes.



Take Home

- * Bayesian networks are a knowledge representation formalism to reason under uncertainty.
- * They provide a semantics understandable to humans and facilitate the acquisition of modular knowledge.
- Bayesian networks can be learned from data.
- * Hidden variables and not measurable quantities are major obstacles to causal discovery.
- * Bayesian networks can be used to model causality, although their arcs aren't necessarily causal.