24.118 - Paradox and Infinity
 Problem Set 8: Computability

How this problem set will be graded:
You will be graded on the basis of whether your answers are correct.
Problems:

1. Design a Turing machine that does the following: when given a zero as input, it sets off on a task that never ends; when given a one as input, it halts.
2. Design a Turing machine that does the following: when given a string of n ones as input, it produces a string of zeroes and ones that expresses n in binary notation, and halts.
3. Design a Turing machine that does the following: when given a string of n ones as input, it produces a string of one one if n is prime and a string of two ones if n is composite. (Assume $n \geq 2$)
4. Can any computation carried out by a Turing machine which is allowed to use two symbols (plus blanks) also be carried out by a Turing machine that is only allowed to use only one symbol (plus blanks)? If your answer is 'no', explain why not. If your answer is 'yes' explain how to transform a two-symbol Turing machine into the corresponding one-symbol Turing machine.
5. Extra Credit.

Design a Turing machine that does the following: when given a string of n ones it produces a string of m ones as output, where m is the nth Ackermann Number. (See: http://en.wikipedia.org/wiki/Ackermann_function

A Turing-machine simulator and instructions for building Turing-machines can be found at:
http://morphett.info/turing/turing.html
Although you should feel free to experiment with other simulators (which are widely available on the web), answers to problems 1-3 and 5 will only be given credit if the code is written in such a way that it can be copied and pasted into the simulator above.

MIT OpenCourseWare
http://ocw.mit.edu

24.118 Paradox \& Infinity

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

