Subject 24.241. Logic I. Assignment due Thursday, October 6

1. Write a sentence with the following truth table:

<u>P</u>	Q	R	
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	0

- 2a) Write a sentence that is logically equivalent to " $(P \leftrightarrow (Q \leftrightarrow R))$ " and that is a disjunction of conjunctions of atomic and negated atomic sentences.
- b) Write a sentence that is logically equivalent to " $(P \leftrightarrow (Q \leftrightarrow R))$ " and that is a conjunction of disjunctions of atomic and negated atomic sentences.
- 3. Write a sentence logically equivalent to "(P ↔ ¬Q)" whose only connective is "NOR," and then write such a sentence whose only connective is "NAND," where these connectives are described by the following truth table:

φ	ψ	$(\phi \text{ NOR } \psi)$	$(\phi \text{ NAND } \psi)$
1	1	0	0
1	0	0	1
0	1	0	1
0	0	1	1

- 4. How long is the longest list of SC sentences with the following two properties: None of the sentences on the list contains any atomic sentence other than "P," "Q," "R," or "S"; and no two sentences on the list are logically equivalent? You don't need to write out the list; just tell me exactly how long it is.
- 5. Test each of the following sentences for validity by using the method of truth tables, then test each sentence again by the search-for-counterexamples method:
 - a) $((P \rightarrow (Q \lor R)) \lor (\neg P \rightarrow (S \leftrightarrow U)))$
 - b) $((\neg P \rightarrow (Q \lor R)) \lor (\neg P \rightarrow (S \leftrightarrow U)))$
 - c) $((P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow R)$
 - d) $(((P \rightarrow Q) \rightarrow R) \rightarrow (P \rightarrow (Q \rightarrow R)))$
 - e) $(((P \rightarrow Q) \rightarrow R) \rightarrow ((P \rightarrow R) \rightarrow R))$