Substitutions

A *substitution* is a function s associating SC sentences with SC sentences that meets the following conditions:

$$\begin{split} s((\phi \lor \psi)) &= (s(\phi) \lor s(\psi)) \\ s((\phi \land \psi)) &= (s(\phi) \land s(\psi)) \\ s((\phi \to \psi)) &= (s(\phi) \to s(\psi)) \\ s((\phi \leftrightarrow \psi)) &= (s(\phi) \leftrightarrow s(\psi)) \\ s(\neg \phi) &= \neg s(\phi) \end{split}$$

For example, if $s("A") = "(C \rightarrow D)"$ and $s("B") = "(D \leftrightarrow \neg E)$, then $s("(A \land \neg B)") = "((C \rightarrow D) \land \neg (D \leftrightarrow \neg E))$."

If φ is a sentence and s is a substitution, then $s(\varphi)$ is said to be a *substitution instance* of φ .

If s is a substitution and \Im is a N.T.A., let \Im° s be the N.T.A. given by

$$\mathfrak{I}^{\circ}\mathbf{s}(\mathbf{\varphi}) = \mathfrak{I}(\mathbf{s}(\mathbf{\varphi})),$$

for every atomic sentence φ . It's easy to convince ourselves that the equation

$$\mathfrak{I}^{\circ}\mathbf{s}(\boldsymbol{\varphi}) = \mathfrak{I}(\mathbf{s}(\boldsymbol{\varphi}))$$

holds for all sentences, complex as well as simple.

Substitution Theorem 1. Any substitution instance of a tautology is a tautology. Any substitution instance of a contradiction is a contradiction.

Proof: Suppose that φ is a tautology and s is a substitution. Take any N.T.A. \Im . Because φ is a tautology and $\Im^{\circ}s$ is a N.T.A., $\Im^{\circ}s(\varphi) = 1$. So $s(\varphi)$ is true under \Im . Since \Im was arbitrary, we conclude that $s(\varphi)$ is true under every N.T.A., and hence that φ is a tautology. The argument for contradictions is similar. \underline{X}

Substitution Theorem 2. Let s be a substitution. If φ implies ψ , then $s(\varphi)$ implies $s(\psi)$. If φ and ψ are logically equivalent, $s(\varphi)$ and $s(\psi)$ are logically equivalent. If φ is a logical consequence of Γ , then $s(\varphi)$ is a logical consequence of $\{s(\gamma): \gamma \in \Gamma\}$.

Proof: Similar. \underline{X}

In analogy with the theorem before last, you might expect that every substitution instance of a consistent sentence is consistent. But that's not true. A counterexample is the inconsistent

SC Substitutions, p. 2

sentence " $((Q \land \neg Q) \land P)$," which is a substitution instance of the consistent sentence " $(A \land B)$." What we have instead is this:

Substitution Theorem 3. A sentence φ is consistent if and only if some substitution instance of φ is tautological.

Proof: (\Rightarrow)Let \Im be a N.T.A. under which φ is true. Define a substitution s by:

s(ψ) = "(P ∨ ¬P)" if ψ is an atomic sentence that is true under ℑ= "(P ∧ ¬P)" if ψ is an atomic sentence that is false under ℑ

It is easy to convince ourselves that, for any sentence θ , if θ is true under \Im , then $s(\theta)$ is a tautology, whereas if θ is false under \Im , $s(\theta)$ is a contradiction. To show this in detail, we'd give a proof by reductio ad absurdum: Assume that the thing you're trying to prove is false, then show that this assumption leads to a contradiction. So assume that there a sentence θ such that either $\Im(\theta)=1$ but $s(\theta)$ isn't tautological or $\Im(\theta)=0$ even though $s(\theta)$ isn't contradictory. Let θ be a simplest such sentence. The proof the breaks down into six cases, depending on whether θ is atomic, a disjunction, a conjunction, a conditional, a biconditional, or a negation. I won't go through the details.

Since $\Im(\varphi) = 1$, $s(\varphi)$ is a tautological substitution instance of φ .

(\Leftarrow) If ϕ is inconsistent, then every substitution instance of ϕ is inconsistent. So no substitution instance of ϕ is tautological.X

Substitution Theorem 4. A sentence φ is tautological iff every substitution instance of φ is tautological iff every substitution instance of φ is consistent. A sentence ψ is contradictory iff every substitution instance of ψ is contradictory iff every substitution instance of ψ is invalid.

Proof: Let (a) be " ϕ is tautological," (b) be "Every substitution instance of ϕ is tautological," and (c) be "Every substitution instance of ϕ is consistent. We show, first, that (a) implies (b), next that (b) implies (c), and finally that (c) implies (a).

(a) \Rightarrow (b): Substitution Theorem 1.

(b) \Rightarrow **(c)**: Immediate.

(c) \Rightarrow (a): What we'll actually prove is that the negation of (a) implies the negation of (c), which comes to the same thing. If φ isn't tautological, then $\neg \varphi$ is consistent. So, by Substitution Theorem 3, there is a substitution s such that $s(\neg \varphi)$ is tautological. Since the negation of $s(\varphi)$ is tautological, $s(\varphi)$ is contradictory. So φ has a substitution instance that is inconsistent.

SC Substitutions, p. 3

We could prove the second part of Substitution Theorem 4 the same way, but a quicker proof appeals to the first part of Substitution Theorem 4, thus:

Ψ is contradictory
iff ¬ψ is tautological
iff every substitution instance of ¬ψ is tautological
[because (a) is equivalent to (b)}
iff every substitution instance of ψ is contradictory
iff every substitution instance of ¬ψ is consistent
[because (b) is equivalent to (c)]
iff every substitution instance of ψ is invalid.X

Let φ be a sentence whose only connectives are " \land ," " \lor ," and " \neg ." Let φ^{Dual} be the sentence obtained from φ by exchanging " \land "s and " \lor "s everywhere. Let *d* be the substitution that replaces each atomic sentence by its negation. It's easy to convince ourselves, using de Morgan's laws, that φ^{Dual} is logically equivalent to the negation of $d(\varphi)$. Hence:

Substitution Theorem 5. Let φ and ψ be sentences whose only connectives are " \land ," " \lor ," and " \neg ." Then if φ implies ψ , ψ^{Dual} implies φ^{Dual} . If φ is logically equivalent to ψ , φ^{Dual} is logically equivalent to ψ^{Dual} .

Proof: If φ implies ψ then, by Substitution Theorem 2, $d(\varphi)$ implies $d(\psi)$. So the negation of φ^{Dual} implies the negation of ψ^{Dual} . So there is no N.T.A. under which the negation of φ^{Dual} is true and the negation of ψ^{Dual} is false. Hence there is no N.T.A. under which ψ^{Dual} is true and φ^{Dual} is false; that is, ψ^{Dual} implies φ^{Dual} .

The second part of Substitution Theorem 5 appeals to the first. If φ is logically equivalent to ψ , then φ implies ψ and ψ implies φ . It follows by the first part of the theorem that ψ^{Dual} implies φ^{Dual} and φ^{Dual} implies ψ^{Dual} . Consequently, φ^{Dual} is logically equivalent to ψ^{Dual} .