Russell's Theory of Definite Descriptions

"The person who wrote Waverley wrote Ivanhoe" logically implies "There is someone who wrote both Waverley and Ivanhoe." Bertrand Russell ${ }^{1}$ figured out a clever way to formalize the inference, using machinery we already have on hand. Up until now, we'd have to symbolize "the person who wrote Waverley" by an individual constant, so that our inference would take the form:

$$
\begin{aligned}
& \text { Ia } \\
& \therefore(\exists \mathrm{x})(\mathrm{Wx} \wedge \mathrm{Ix})
\end{aligned}
$$

which is obviously invalid. (Let us restrict our universe of discourse to human beings, so we don't have to symbolize "person.") Russell introduced a new symbolism for expressions consisting of "the" + a singular common noun. He symbolized "the person who wrote Waverley" as "(1x)Wx," and he symbolized "The person who wrote Waverley wrote Ivanhoe" as "I(ix)Wx."

According to Russell, "The person who wrote Waverley wrote Ivanhoe" is logically equivalent to the conjunction of these three statements:

At least one person wrote Waverley.
At most one person wrote Waverley.
Anyone who wrote Waverley wrote Ivanhoe.
In symbols,

$$
(((\exists \mathrm{x}) \mathrm{Wx} \wedge \neg(\exists \mathrm{x})(\exists \mathrm{y})(\neg \mathrm{x}=\mathrm{y} \wedge(\mathrm{Wx} \wedge \mathrm{Wy}))) \wedge(\forall \mathrm{x})(\mathrm{Wx} \rightarrow \mathrm{Ix}))
$$

Equivalently, and more simply,

$$
(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Wy} \leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \mathrm{Ix})
$$

Russell proposed to use this last sentence to symbolize "The person who wrote Waverley wrote Ivanhoe."

In general, a sentence of the form "The F is a G" is symbolized " $G(x x) F x$," which is regarded as an abbreviation of " $(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Fx} \leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \mathrm{Gx})$."
"The person who wrote Waverley exists" is, according to Russell, equivalent to the conjunction of two sentences:

At least one person wrote Waverley.
At most one person wrote Waverley.
${ }^{1}$ "On Denoting," Mind n.s. 14 (1905): 479-93.

Russell's Theory of Descriptions, p. 2
In symbols,

$$
\begin{aligned}
& (\exists \mathrm{x}) \mathrm{Wx} \\
& \neg(\exists \mathrm{x})(\exists \mathrm{y})(\neg \mathrm{x}=\mathrm{y} \wedge(\mathrm{Wx} \wedge \mathrm{Wy}))
\end{aligned}
$$

which can be written more simply thus:

$$
(\exists \mathrm{x})(\forall \mathrm{y})(\mathrm{Wy} \leftrightarrow \mathrm{y}=\mathrm{x})
$$

In general, Russell proposed to symbolize sentences of the form "The F exists" as "E!(ix)Fx," which he treated as an abbreviation for " $(\exists \mathrm{x})(\forall \mathrm{y})(\mathrm{Fy} \leftrightarrow \mathrm{y}=\mathrm{x})$."
"The present king of France is bald" - in symbols, "B(ix)Kx" - is false, says Russell, because it entails "The present king of France exists" - "E!(ix)Kx" - and there is, at present, no king of France. We can prove this by doing a derivation:
$1 \quad 1 \mathrm{~B}(\mathrm{mx}) \mathrm{Kx}$
$12(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \mathrm{Bx})$
$3 \quad 3((\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{a}) \wedge \mathrm{Ba})$
$4(\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{a})$
$5(\exists \mathrm{x})(\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{x})$
$6(\exists \mathrm{x})(\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{x})$
7 E!(x)Kx
8 (B(ix)Kx \rightarrow E!(ix)Kx)

PI
Unabbreviated form
of 1
PI (for ES)
TC, 3
EG, 4
ES, 2, 3, 5
Abbreviated form of 6
CP, 1, 7

Our original inference about Waverley and Ivanhoe is symbolized as follows:

$$
\begin{aligned}
& \mathrm{I}(\mathrm{x}) \mathrm{Wx} \\
& \therefore(\exists \mathrm{x})(\mathrm{Wx} \wedge \mathrm{Ix})
\end{aligned}
$$

PI

Unabbreviated form of 1
PI (for ES)
TC, 3
UG, 4
IR
TC, 6, 7
TC, 5, 8
EG, 9
ES, 2, 3, 10

Russell's Theory of Descriptions, p. 3

We symbolize
Scott is the author of Waverley.
The author of Waverley is a poet.
Therefore, Scott is a poet.
as follows:

$$
\begin{aligned}
& s=(v x) W x \\
& P(1 x) W x \\
& \therefore P s
\end{aligned}
$$

1	$1 \mathrm{~s}=(\mathrm{x}) \mathrm{Wx}$	PI
2	$2 \mathrm{P}(\mathrm{xx}) \mathrm{Wx}$	PI
1	$3(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Wy} \leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \mathrm{s}=\mathrm{x})$	Unabbreviated form of 1
2	$4(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Wy} \leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \mathrm{Px})$	Unabbreviated form of 2
5	$5((\forall y)(W y \leftrightarrow y=a) \wedge s=a)$	PI (for ES)
5	$6(\forall \mathrm{y})(\mathrm{Wy} \leftrightarrow \mathrm{y}=\mathrm{a})$	TC, 5
5	$7 \mathrm{~s}=\mathrm{a}$	TC, 6
8	$8((\forall \mathrm{y})(\mathrm{Wy} \leftrightarrow \mathrm{y}=\mathrm{b}) \wedge \mathrm{Pb})$	PI (for ES)
8	$9(\forall \mathrm{y})(\mathrm{Wy} \leftrightarrow \mathrm{y}=\mathrm{b})$	TC, 8
8	10 Pb	TC, 8
5	11 (Ws $\leftrightarrow \mathrm{s}=\mathrm{a}$)	US, 6
5	12 Ws	TC, 7, 11
8	13 (Ws $\leftrightarrow \mathrm{s}=\mathrm{b}$)	US, 9
5,8	$14 \mathrm{~s}=\mathrm{b}$	TC, 12, 13
5,8	15 Ps	SI, 10, 14
2,5	16 Ps	ES, 4, 8, 15
1,2	17 Ps	ES, 3, 5, 16

Now let's do this inference:

The eldest son of a Greek hero, if he exists, is a hero.
Odysseus is a Greek hero.
Telemachus is the eldest son of Odysseus.
Therefore, Telemachus is a hero.

In symbols,

$$
\begin{aligned}
& (\forall \mathrm{x})((\mathrm{Gx} \wedge \mathrm{Hx}) \rightarrow(\mathrm{E}!(\mathrm{yy}) \mathrm{Syx} \rightarrow \mathrm{H}(\mathrm{y} y) \mathrm{Syx})) \\
& (\mathrm{Go} \wedge \mathrm{Ho}) \\
& \mathrm{t}=(\mathrm{cx}) \text { Sxo } \\
& \therefore \mathrm{Ht}
\end{aligned}
$$

1		PI
2	2 (Go \wedge Ho)	PI
3	$3 \mathrm{t}=$ (1x)Sxo	PI
1	$4(\forall \mathrm{x})((\mathrm{Gx} \wedge \mathrm{Hx}) \rightarrow((\exists \mathrm{y})(\forall \mathrm{z})(\mathrm{Szx} \leftrightarrow \mathrm{z}=\mathrm{y}) \rightarrow(\exists \mathrm{y})((\forall \mathrm{z})(\mathrm{Szx} \leftrightarrow \mathrm{z}=\mathrm{y}) \wedge$ Hy $)$) $)$	
	Unabbreviated form of 1	
3	$5(\exists \mathrm{x})((\forall \mathrm{y})($ Syo $\leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \mathrm{t}=\mathrm{x})$	Unabbreviated form of 3
1	6 ((Go \wedge Ho) $\rightarrow((\exists \mathrm{y})(\forall \mathrm{z})(\mathrm{Szo} \leftrightarrow \mathrm{z}=\mathrm{y}) \rightarrow(\exists \mathrm{y})((\forall \mathrm{z})($ Szo \leftrightarrow	$\leftrightarrow \mathrm{z}=\mathrm{y}) \wedge$ Hy))) US, 4
1,2	$7((\exists \mathrm{y})(\forall \mathrm{z})($ Szo $\leftrightarrow \mathrm{z}=\mathrm{y}) \rightarrow(\exists \mathrm{y})((\forall \mathrm{z})($ Szo $\leftrightarrow \mathrm{z}=\mathrm{y}) \wedge$ Hy) $)$	TC, 2, 7
8	$8((\forall y) S y o \leftrightarrow y=a) \wedge t=a)$	PI (for ES)
8	$9(\forall y)($ Syo $\leftrightarrow y=a)$	TC, 8
8	$10 \mathrm{t}=\mathrm{a}$	TC, 8
8	$11(\forall \mathrm{y})($ Syo $\leftrightarrow \mathrm{y}=\mathrm{t})$	SI, 9, 10
8	12 (Sbo $\leftrightarrow \mathrm{b}=\mathrm{t}$)	US, 11
8	13 ($\forall \mathrm{z}$)(Szo $\leftrightarrow \mathrm{z}=\mathrm{t}$)	UG, 12
8	14 ($\exists \mathrm{y})(\forall \mathrm{z})($ Szo $\leftrightarrow \mathrm{z}=\mathrm{y})$	EG, 13
1,2,8	15 (y) $((\forall \mathrm{z})(\mathrm{Szo} \leftrightarrow \mathrm{z}=\mathrm{y}) \wedge$ Hy)	TC, 7, 14
16	16 (($\forall \mathrm{z})(\mathrm{Szo} \leftrightarrow \mathrm{z}=\mathrm{c}) \wedge \mathrm{Hc})$	PI (for ES)
16	$17(\forall \mathrm{z})($ Szo $\leftrightarrow \mathrm{z}=\mathrm{c})$	TC, 16
16	18 Hc	TC, 16
8	19 (Sto $\leftrightarrow \mathrm{t}=\mathrm{t}$)	US, 13
	$20 \mathrm{t}=\mathrm{t}$	IR
8	21 Sto	TC, 19, 20
16	22 (Sto $\leftrightarrow \mathrm{t}=\mathrm{c}$)	US, 17
8,16	$23 \mathrm{t}=\mathrm{c}$	TC, 21, 22
8,16	24 Ht	SI, 18, 23
1,2,8	25 Ht	ES, 15, 16, 24
1,2,3	26 Ht	ES, 5, 8, 25

There is an annoying ambiguity in the story we have told so far. Consider the sentence "The present king of France is not bald." There are two ways we might symbolize the sentence. We might read it as the negation of the sentence obtained by substituting "the present King of France" for " x " in the open sentence " x is bald." Alternatively, we might understand it as the result of substituting "the present king of France" for "x" in the open sentence "x is not bald." The first choice gives us " $\neg(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \mathrm{Bx})$," which is true, whereas the second gives us the false sentence, " $(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{x}) \wedge \neg \mathrm{Bx})$."

Russell developed an unambiguous notation that made room for both readings. While admirably precise, it was rather cumbersome. The simplest policy would simply be always to cash out a definite description by applying Russell's method to the atomic open sentence that contains the description. This policy will make out "The present king of France is not bald" to be true, which I would regard as intuitively correct. Under this policy, "The present king of France is either bald or not bald" comes out as a tautology, " $((\exists x)((\forall y)(K y \leftrightarrow y=x) \wedge B x) \vee$

Russell's Theory of Descriptions, p. 5
$\neg(\exists \mathrm{x})((\forall \mathrm{y})(\mathrm{Ky} \leftrightarrow \mathrm{y}=\mathrm{x})) . "$
There's still an ambiguity. What do we do with an atomic sentence that contain several definite descriptions? And how do we cash out a definite description that contains another definite description inside it? These are small problems that we don't need to address here.

