24.251 – Intro to the Philosophy of Language Problem Set 4: Tarski on Truth

- 1. Which of the following is an appropriate instance of Tarski's schema (T):
 - (a) 'grass is green' is true if and only if grass is green
 - (b) grass is green is true if and only if grass is green
 - (c) grass is green is true if and only if 'grass is green'
 - (d) X is true if and only if p
- 2. Suppose one's object language \mathcal{L} consisted entirely of the two sentences 'snow is white' and 'grass is green', and suppose one gave the following definition of truth for \mathcal{L} :

For any sentence s, s is true if and only if [it is either the case that (s = 'snow is white' and snow is white) or it is the case that (s = 'grass is green' and grass is green)]

Which of the following would be true, according to Tarski:

- (a) One's definition of truth is materially adequate
- (b) One's definition makes no appeal to undefined semantic terms (cf. the first paragraph of p. 343).
- (c) Both
- (d) Neither
- 3. Let \mathcal{L} be defined as above. Why, according to Tarski, shouldn't one expect the antinomy of the Liar to be derivable in \mathcal{L} .
 - (a) Because the usual laws of logic don't apply.
 - (b) Because \mathcal{L} isn't semantically closed.
 - (c) One *can* derive the antinomy of the Liar in \mathcal{L} .
 - (d) None of the above.
- 4. Consider a language, \mathcal{L}' , built up from the predicate '... is true' and the names on the following list:
 - c_0 (which refers to the English sentence 'snow is white')
 - c_1 (which refers to the \mathcal{L}' sentence ' c_0 is true')

- c_2 (which refers to the \mathcal{L}' sentence ' c_1 is true')
- c₃ (which refers to the L' sentence 'c₂ is true')
 .
- c_{n+1} (which refers to the L' sentence 'c_n is true')

Sentences in \mathcal{L}' are formed in the usual way:

- for any i, ' c_i is true' is a sentence
- if ϕ is a sentence, then 'it is not the case that ϕ ' is a sentence
- if ϕ and ψ are sentences, then ' $(\phi$ and ψ)' is a sentence
- nothing else is a sentence

Finally, we stipulate that the ordinary laws of logic are to hold for \mathcal{L}' . Can the antinomy of the Liar be derived in \mathcal{L}' ?

- (a) Yes.
- (b) No.

(*Hint:* This is a non-trivial question. In answering it, make sure you read the discussion on p. 340, and footnote 11.)