MIT OpenCourseWare http://ocw.mit.edu

24.963 Linguistic Phonetics Fall 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

24.963 Linguistic Phonetics

The phonetics and phonology of retroflex consonants

dental []] retroflex []] MRI images of Tamil laterals (Narayanan et al 1999)

Figure by MIT OpenCourseWare, adapted from Narayanan, Shrikanth, Dani Byrd, and Abigail Kaun. "Geometry, Kinematics, and Acoustics of Tamil Liquid Consonants." *The Journal of the Acoustical Society of America* 106, no. 4 (October 1999): 1993-2007.

The phonetics and phonology of retroflex consonants

apical alveolar [t] retroflex [t]

Malayalam

Courtesy of Ashtu Killimangalam. Used with permission.

Distribution of retroflexion contrasts in Gooniyandi (Steriade 1995)

Intervocalic: contrast

	apico-alveolar	<u>retroflex</u>
oral stops	Jutu 'straight'	Judu 'GLOSS'
nasals	maniŋa 'night time'	maninga 'sister'
laterals	wila 'ok, finish'	wila 'back'
rhotics	Jari 'if'	Jari 'dry roots'

Word final, post V apicals:contrastapico-alveolarretroflexjawan (subsection term)jilŋiŋ 'dew'

Distribution of retroflexion contrasts in Gooniyandi

Preconsonantal, post V apicals: contrast

	<u>apico-alveolar</u>	retroflex
oral stops	dj	તુ b, તુ g
nasals	n j , ng, nŋ	ղք, ղց, ղm, ղŋ
laterals	lb, l j , lg, lm, lŋ, lw	լ b, լj, լg, լm, լդ, լw

e.g.: **Junjunanajgu** 'pardalote' vs. **gambunjuwa** (toponym) **balŋaŋa** 'outside' vs. **wanbiŋa** 'I'll go'

Word-initial: no contrast (free variation): tu:wu: ~ tu:wu 'cave'

ηα:gA ~ na:gA 'dress'

Postconsonantal: no contrast Apical clusters: nd, nd, ld, nj e.g.: bandi 'spider' vs. jambiyindi (subsection name) banjundi 'I returned'

Distribution of retroflexion contrasts in Gooniyandi

Summary:

- Contrast between retroflex and apical alveolar after vowels V_#, V_V
- No contrast elsewhere #_, V_C

- This pattern of distribution is common in Australian and Dravidian languages.
- An unusual pattern of distribution major place contrasts, voicing contrasts occur preferentially <u>before</u> vowels.

Distribution of retroflexion contrasts

Explanation (Steriade 1995, etc):

- The primary cues to the contrast between retroflex and apical alveolar are located in the VC transitions (unlike major place contrasts.
 - Most retroflex consonants are retroflexed at closure, but the tongue tip moves forward during closure.
 - At release tongue tip position is similar to an apical alveolar, consequently the release and CV transitions of the two consonant types are similar.
- Contrasts preferentially appear in environments where they are better cued.

Warlpiri [t] from onset of closure to post-release: Butcher 1993

Figure by MIT OpenCourseWare. Adapted from Butcher, Andrew. "The Phonetics of Australian Languages." Flinder University, South Australia, 1993. Unpublished manuscript.

Distribution of retroflexion contrasts

Moral:

• The details of the articulation and acoustics of retroflexes are crucial to understanding their phonological properties.

Second Occurrence Focus

Focus sensitive particles:

- 1. Jan only gave BILL money.
- 2. Jan only gave Bill MONEY.

• The focus of 'only' is usually marked by a pitch accent (e.g. H*).

Second Occurrence Focus

• It has been claimed that there are cases in which the focus of 'only' is not prosodically marked, e.g. SOF:

Me: Everyone already knew that Mary only eats [vegetables]_F.

You: If even $[Paul]_F$ knew that Mary only eats $[vegetables]_{SOF}$, then he should have suggested a different restaurant.

Beaver, David I. Brady Z. Clark, Edward Flemming, Florian Jaeger, and Maria Wolters. "When Semantics Meets Phonetics: Acoustical Studies of Second Occurrence Focus." *Language* 83, no. 2 (2007): 251-282.

- Others claim that SOF is longer/louder than a matched unfocused word.
- Beaver et al (2007) show that this is correct.

Image by MIT OpenCourseWare. Adapted from Denes, Peter B., and Elliot N. Pinson. *The Speech Chain: The Physics and Biology of Spoken Speech*. 2nd ed. New York, NY: W. H. Freeman, 1993. ISBN: 9780716723448.

Articulation-The speech production system

Image by MIT OpenCourseWare.

The vocal tract

Image by MIT OpenCourseWare.

Articulatory description of speech sounds

Consonants:

- Voicing
- Place of articulation
- Manner
- Lateral/Central
- Nasal/Oral
- [s] voiceless alveolar central oral fricative

Articulatory description of speech sounds

Vowels:

- High-low
- Front-back
- Rounded-unrounded

• [e] mid front unrounded vowel

Video removed due to copyright restrictions.

Please visit "Tongue video" in Peter Ladefoged's Vowels and Consonants.

Introduction to acoustics

• Sound consists of pressure fluctuations in a medium...

...which displace the ear drum in such a way as to result in stimulation of the auditory nerve.

animation

Speech acoustics

- Movements at a source produce a sound wave in the medium which carries energy to the perceiver.
- Pressure fluctuations move through space, but each air particle moves only a small distance.

Animated image of longitudinal pressure wave removed due to copyright restrictions.

Representing sound waves

Image by MIT OpenCourseWare. Adapted from The Physics Classroom Tutorial.

Periodic sounds

- A waveform is periodic if it repeats at regular intervals.
- Frequency of a wave is the number of cycles occurring per unit of time.
 - Units: 1 Hertz (Hz) is 1 cycle/second

Periodic sounds

- Voiced sounds have complex (quasi-)periodic wave forms.
- The perceived pitch of a sound depends on its frequency.

Image by MIT OpenCourseWare.

Segment of [)]

Aperiodic sounds

- Aperiodic sounds have waveforms that do not repeat.
- Fricative noise is aperiodic.

Waveform of a sentence

Image by MIT OpenCourseWare.

Please pass me my book

Spectrums and spectrograms

• The spectrum of a sound plays a central role in determining its quality or timbre.

Spectral representation

- Any complex wave can be analyzed as the combination of a number of sinusoidal waves of different frequencies and intensities (Fourier's theorem).
- In the case of a periodic sound like a vowel these will be
 - the fundamental frequency
 - multiples of the fundamental frequency (harmonics)
- The quality of a periodic sound depends on the relative amplitude of its harmonics.

Spectral representation

Fundamental frequency

2nd harmonic

Spectral representation

Phase differences are relatively unimportant to sound quality, so key • properties of a complex wave can be specified in terms of the frequencies and amplitudes of its sinusoidal components.

		1.2
Frequency (Hz)	Amplitude	0.8 -
100	1	0.6 -
200	0.6	0.4 -
300	0.45	0.2 -
400	0.3	o
500	0.1	0 100 200 300 40 frequency (Hz)

Power spectrum

400

500

600

Idealized vowel spectrum

Image by MIT OpenCourseWare.

vowel spectrum

Vowel quality

- The quality of a vowel depends on the shape of its spectrum.
- The shape of the spectrum depends on the shape of the vocal tract.
 [æ] [1]

Vowel quality

- The peaks in the spectrum of a vowel are called **formants**.
- Perceived vowel quality depends primarily on the frequencies of the first three formants.

Spectrograms

Image by MIT OpenCourseWare.

A spectrum represents important properties of a sound during an interval of time, but we are often interested in how the spectrum of a sound changes over time.

Spectrogram image removed due to copyright restrictions.

See: http://hctv.humnet.ucla.edu/departments/linguistics/VowelsandConsonants/course/chapter8/8.3.htm

F2 (Hz)

Image by MIT OpenCourseWare. Adapted from Ladefoged, Peter. *A Course in Phonetics*. 5th ed. Berlin, Germany: Heinle, 2005. ISBN: 9781413006889. Available at: http://www.phonetics.ucla.edu/course/contents.html.