
MIT 3.00 Fall 2002 c© W.C Carter 121

Lecture 18

Describing the State of an Alloy
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Figure 18-1: Example of one particular choice of a virtual variation of a system. The
originally homogeneous system is compared to two other systems of different size.

Question: Because they are extensive, shouldn’t the internal energy in Figure 18-1 scale lin-
early with the volume?
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Figure 18-2: Example of why it is not sufficient to consider variations like ∆U =
Uo + U ′∆V + U ′′∆V 2/2 + . . .

Equilibrium: (δS)δU=0 , δV =0 ≤ 0

Equilibrium: (δU)δS=0 , δV =0 ≥ 0

P and T are Uniform when Volume and Energy can be Exchanged

Volume (entropy fixed at So)

U three systems that
satisfy mechanical
equilbrium

Figure 18-3: Three separate systems that are in mechanical equilbrium, but not neces-
sarily thermal equilibrium.
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Equilibrium for Systems with Internal Degrees of Freedom

The expressions of equilibrium that have been derived are not terribly profound or useful
so far. Another condition of equilibrium that is very useful will be derived below and this is
one that you will use over and over again as professional scientists.

Recall that when considering other types of work:

dU = TdS − PdV +
∑

i

Fidxi (18-1)

where Fi were the various forces acting on the system and the xi were the extensive variables
that changed according to those forces. We consider the V and the xi to be the degrees of
freedom associated with the system.

Composition Variation and Phase Fractions
We now consider a very important system that has internal degrees of freedom: a system
composed of variable chemical elements and various phases. In other words, the internal
degrees of freedom are the compositions of the various regions that compose our system.

This topic often confuses students, so I will go over the terms very carefully, first a few
definitions:

phase A part of a system that can be indentified as “different” from another part of the
system. A phase is always separated from another phase by an identifiable interface.
Examples of phases are a solution of iron and carbon in an FCC structure and a solution
of iron and carbon in a BCC structure.

composition The fractions of the various chemical components that comprise a system.
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phase fraction of α The fraction of a system that is the α-phase.

composition of phase α The composition of the subsystem composed of α-phase alone.

α−phase

(Nα
B , Nα

W)

β−phase
(Nβ

B , Nβ
W)

Figure 18-4: A system in equilibrium with its surroundings and composed of two phases
α and β, each having a different chemical composition. This illustration is for two phases
and two independent components but it may be extrapolated to to as many phases and
components as required. Later, a relation between the number of phases f and the
number of components C that can exist at equilibrium will be derived.

NB and NW represent numbers of B- and W−type molecules. The number of moles in
phases α and in phase β can be varied.

The following notation should be studied carefully.
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Notation
Nα

B Number of B atoms (or molecules) in α-
phase

Nα
W Number of W atom in α-phase

Nβ
B Number of B atom in β-phase

Nβ
W Number of W atom in β-phase

Therefore the total numbers of B molecules (or atoms) and W molecules in the system are:

NB =Nα
B + Nβ

B = (general)

f∑
i=1

N i
B

NW =Nα
W + Nβ

W = (general)

f∑
i=1

N i
W

(18-2)

The total number of atoms in the system is

Ntotal = NB + NW = (in general)
C∑

j=1

Nj (18-3)

The average composition in the system is

NB ≡XB =
NB

Ntotal

NW ≡XW =
NW

Ntotal

(18-4)

Furthermore, we can find the total number of atoms (molecules) in the α-phase:

Nαtotal =Nα
B + Nα

W = (in general)
C∑

j=1

Nα
j

Nβtotal
=Nβ

B + Nβ
W = (in general)

C∑
j=1

Nβ
j

(general, for phase i) N itotal
=

C∑
j=1

N i
j

(18-5)
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And the compositions of the phases can be defined as:

Xα
B =

Nα
B

Nαtotal
Xα

W =
Nα

W

Nαtotal

Xβ
B =

Nβ
B

Nβtotal
Xβ

W =
Nβ

W

Nβtotal

(18-6)

An Illustrative Example

To fix our ideas, consider the following figure and think of NB as the number of black spots

XB = 0.5 Xα
B = 0.2

Xβ
B = 0.9

Figure 18-5: Example of a system where the composition is nowhere equal to the average
composition.

The phase fractions can be computed as follows:
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fα =
Nαtotal

Ntotal
fβ =

Nβtotal

Ntotal

generally, f i =
N itotal

Ntotal

1 =

f∑
i=1

f i

(18-7)

Note that:

XB = fαXα
B + (1− fα)Xβ

B (18-8)

or

fα =
XB −Xβ

B

Xα
B −Xβ

B

(18-9)

Notice that nowhere in the system is the actual composition equal to the average
composition.
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A Concrete Example

To fix this idea even further, consider a brine solution with watery-ice and salty-water. The
quantity of interest may be the temperature (or temperatures) that an average composition of
CNaCl = 0.07 has an icy-phase in equilibrium with a watery-phase. One possible state of the
system may be:

C
icy
NaCl

= 0.0005 and C
watery
NaCl

= 0.09
which completely determines the phase fractions.

Note that this doesn’t determine what the extent (i.e. N
icy
total

and N
watery
total

) of the system
is—it only produces derived intensive quantities.


