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Lecture 26

The Gibbs Phase Rule and its Application
Last Time

Symmetry and Thermodynamics

Cf + 2 Variables

C(f − 1) Equations for Continuity of Chemical Potential

f Gibbs-Duhem Relations (one for each phase)

D = C − f − 2 Degrees of Freedom Left Over

The Gibbs Phase Rule

D + f = C + 2 (26-1)

The Gibbs phase rule is a very useful equation because it put precise limits on the number
of phases f that can be simultaneously in equilibrium for a given number of components.

What does Equation 26-1 mean? Consider the following example of a single component
(pure) phase diagram C = 1.
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Figure 26-1: A single component phase diagram. On the right figure, the color represents
a molar extensive quantities (i.e., blue is a low value of V and red is a large value of V )
that apply to each phase at that particular P and T .

Consider a single-phase region:
D = 2− f + C = 2− 1 + 1 = 2

This implies that two variables (P and T ) can be changed independently (i.e., pick any dP
and dT ) and a single phase remains in equilibrium.

Consider where two phases are in equilibrium:
D = 2− f + C = 2− 2 + 1 = 1,
There is only one degree of freedom–for the two phases to remain in equilibrium, one variable
can be changed freely (for instance, dP ) but then the change in the other variable (i.e., dT )
must depend on the change of the free variables:

dP

dT
= f(P, T )
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Finally, consider where three phases are in equilibrium then:
D = 2− 3 + 1 = 0.

There can be no change any variable that maintains three phase equilibrium.

Various Confusing Issues on Applications of D + f = C + 2

Consider a pure liquid A in contact with the air. The degrees of freedom can be determined
in several equilvalent ways.

A Consider the system composed of two components, the pure liquid A and air and restrict
that the total pressure is 1 atm.
(D + f = C + 2) → (D + f = C + 1).
Therefore, D = 2− 2 + 1 = 1.

B Considering that the system consists of three components: A, O2, N2 and has two additional
restrictions: 1) ΣP = 1 PO2

/PN2
= constant, then (D + f = C +2) → (D + f = C +0).

D = 3− 2 + 0 = 1 as before.
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C Disregard the air: C = 1. f = 2 and therefore D = 1. The liquid has an equilibrium vapor
pressure which is a function of temperature. One can pick either the vapor pressure or
the temperature independently, but not both.

Single Component Phase Equilibria

When there is only one degree of freedom in a single component phase diagram, it was
shown above that there must be a relation between dP and dT for the system to remain in
two phase equilibrium. Such a relation can be derived as follows:

0 = SliquiddT − V liquiddP

0 = SsoliddT − V soliddP

=⇒ dP

dT

∣∣∣∣
equilibrium

=
∆S

∆V
=

∆H

Teq.∆V

(26-2)

Equation 26-2 is the famous Clausius-Clapeyron equation.

Consider the behavior of the molar free energy (or µ) on slices of Figure 26-1 at constant
P and T :
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Figure 26-2: Considerations of the molar Gibbs free energy on slices of the single com-
ponent phase diagram along lines of constant T and constant P .
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Figure 26-3: Behavior of G = µ at constant P as a function of T . Where the curvature
of G changes sign, the system is unstable. The liquid and vapor curves must be con-
nected to each other and this is illustrated with the ”spiny-looking” curve with opposite
curvature. The curve for solid is not connected to the others.
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Figure 26-4: Behavior of G = µ at constant T as a function of P .
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Figure 26-5: Example of single component phase diagram plotted with one derived
intensive variable.

What would the plot look like with two extensive variables plotted?


