Uniformity of Chemical Potential at Equilibrium

Last Time
Single Component Phase Diagrams: Gibbs Phase Rule
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single Component Phase Diagrams: Behavior of \bar{G}
\qquad
\qquad
\qquad
\qquad
\qquad

Freezing Point Depression
\qquad
\qquad
\qquad
\qquad
\qquad
___ Conditions for the Appearance of a New Phase \qquad
Last time, it was observed that a a soluble species (i.e, salt) cannot continue to be added to a phase (i.e. salty water) and continue to lower the freezing point.

What happens when too much salt is added to a solution?
\qquad
\qquad

Clearly, a solubility limit must exist and a new phase will appear.
This can be qualitatively understood by considering the behavior of the molar Gibbs free energy of forming a solution as a function of the amount of solute X_{B} :

To quantify the conditions for the appearance of new phases, consider the thermodynamics of binary (i.e. two component) alloys ${ }^{28}$

The Gibbs-Duhem equation of a system consisting of two components A and B is:

$$
0=S d T-V d P+\sum N_{i} d \mu_{i}=S d T-V d P+N_{A} d \mu_{A}+N_{B} d \mu_{B}
$$

Consider a closed system consisting of one mole of molecules: $N_{A}+N_{B}=1$ mole:

$$
\begin{equation*}
X_{A}=\frac{N_{A}}{N_{A}+N_{B}} \quad \Longrightarrow \quad X_{B}=1-X_{A}=\frac{N_{B}}{N_{A}+N_{B}} \tag{28-1}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The state of the system (per mole) should be representable by three independent parameters, $\left(T, P, X_{B}\right)$ or $\left(T, P, X_{A}\right)$. Therefore, using $\mu_{A}=\mu_{A}\left(P, T, X_{B}\right)$ and $\mu_{B}=\mu_{B}\left(P, T, X_{B}\right)$ in the Gibbs-Duhem equation:

$$
\begin{align*}
0= & \bar{S}^{\text {total }} d T-\bar{V}^{\text {total }} d P \\
& +X_{A}\left(\frac{\partial \mu_{A}}{\partial T} d T+\frac{\partial \mu_{A}}{\partial P} d P+\frac{\partial \mu_{A}}{\partial X_{B}} d X_{B}\right) \tag{28-2}\\
& +X_{B}\left(\frac{\partial \mu_{B}}{\partial T} d T+\frac{\partial \mu_{B}}{\partial P} d P+\frac{\partial \mu_{B}}{\partial X_{B}} d X_{B}\right)
\end{align*}
$$

where

$$
d \mu_{A}=\frac{\partial \mu_{A}}{\partial T} d T+\frac{\partial \mu_{P}}{\partial T} d P+\frac{\partial \mu_{A}}{\partial X_{B}} d X_{B}
$$

Note that $\frac{\partial \mu_{A}}{\partial T}=-\overline{S_{A}}$ and $\frac{\partial \mu_{B}}{\partial T}=\overline{V_{B}}$, thus,

[^0]\[

$$
\begin{align*}
0= & \bar{S}^{\text {total }} d T-\bar{V}^{\text {total }} d P \\
& -\left(X_{A} \overline{S_{A}}+X_{B} \overline{S_{B}}\right) d T+\left(X_{A} \overline{V_{A}}+X_{B} \overline{V_{B}}\right) d P \tag{28-3}\\
& +\left(X_{A} \frac{\partial \mu_{A}}{\partial X_{B}}+\left(1-X_{A}\right) \frac{\partial \mu_{B}}{\partial X_{B}}\right) d X_{B}
\end{align*}
$$
\]

The first and third terms cancel and the second and fourth terms cancel. Therefore,

$$
\begin{equation*}
\left(1-X_{B}\right) \frac{\partial \mu_{A}}{\partial X_{B}}+X_{B} \frac{\partial \mu_{B}}{\partial X_{B}}=0 \tag{28-4}
\end{equation*}
$$

This is a general result for binary solution. It is the form of the Gibbs-Duhem equation for solutions. Equation $28-4$ gives a relation between the derivatives of the chemical potentials but not a relation between the chemical potentials themselves.

Graphical Constructions for the Free Energy of Solutions

A useful graphical construction can be utilized for extracting values of chemical potentials: Consider that the molar free energy of a solution is plotted as follows:

Figure 28-1: Example of the Molar Gibbs Free Energy of a Solution and related graphical constructions.

It would be particularly useful to obtain the chemical potentials of each species in solution as a function of composition. This relationship can be determined as follows:

Starting with an expression for the molar free energy of the solution being a weighted sum of the chemical potentials:

$$
\begin{equation*}
\overline{G_{s o l}}=X_{A} \mu_{A}+X_{B} \mu_{B} \tag{28-5}
\end{equation*}
$$

$d \overline{G_{\text {sol }}}$ becomes when using $d X_{B}=-d X_{A}$.
or

$$
\begin{equation*}
\frac{\partial \overline{G_{s o l}}}{\partial X_{A}}=\mu_{A}-\mu_{B} \tag{28-6}
\end{equation*}
$$

at constant P and T; similarly,

$$
\begin{equation*}
\frac{\partial \overline{G_{s o l}}}{\partial X_{B}}=\mu_{B}-\mu_{A} \tag{28-7}
\end{equation*}
$$

Multiplying $\partial \overline{G_{\text {sol }}} / \partial X_{B}$ by X_{B} and subtracting it from $\overline{G_{\text {sol }}}$:

$$
\begin{equation*}
\overline{G_{s o l}}-X_{B} \frac{\partial \overline{G_{\text {sol }}}}{\partial X_{B}}=X_{A} \mu_{A}+X_{B} \mu_{B}-\left(X_{B} \mu_{B}-X_{B} \mu_{A}\right)=\mu_{A} \tag{28-8}
\end{equation*}
$$

or

$$
\begin{align*}
& \mu_{A}=\overline{G_{\text {sol }}}+X_{B} \frac{\partial \overline{G_{\text {sol }}}}{\partial X_{A}}=\overline{G_{\text {sol }}}-X_{B} \frac{\partial \overline{G_{\text {sol }}}}{\partial X_{B}} \\
& \mu_{B}=\overline{G_{\text {sol }}}+X_{A} \frac{\partial \overline{G_{\text {sol }}}}{\partial X_{B}}=\overline{G_{\text {sol }}}-X_{A} \frac{\partial \overline{G_{\text {sol }}}}{\partial X_{A}} \tag{28-9}
\end{align*}
$$

These equations can be interpreted with the following figure.

Equilibria between Phases

To calculate the equilibrium condition between several phases, the condition that the chemical potential of each component μ_{i} is the same in each phase. The graphical construction for chemical potential can be used to obtain this condition-this condition will be called the "common tangent" condition.

Suppose another curve corresponding to another phase that can also form a solution of $A-B$ is considered. Below, another graphical construction will be demonstrated that will determine the properties of stable phases.

Consider two phases; to fix our ideas let one curve be the molar Gibbs free energy as a function of composition at constant pressure and temperature be for a solid solution. Another curve for the liquid solution will be added:

Questions:

1. What is the molar free energy charge for melting pure A ? For melting pure B ?
\qquad
\qquad
\qquad
\qquad
2. What is the molar free energy charge for melting a solid solution at X_{\circ} ?
\qquad
\qquad
\qquad
\qquad
3. What is the free energy charge for forming a liquid solution from X_{\circ} moles of pure B and $1-X_{\circ}$ moles of pure A ?
4. In the picture as it's drawn, rank the following with respect to stability from most stable to least stable at some fixed composition.
$A^{\text {solid }} —^{\text {solid }}$ A heterogeneous mixture of pure solid A and pure solid B. $A^{\text {solid }} \ldots B^{\text {liquid }}$ Heterogeneous mixture of pure solid A and pure liquid B. $A^{\text {liquid }}-B^{\text {solid }} \mathrm{A}$ heterogeneous mixture of pure liquid A and pure solid B. $A^{\text {liquid }}{ }_{[} B^{\text {liquid }} \mathrm{A}$ heterogeneous mixture of pure liquid A and pure liquid B. $(A B)^{\text {solid }}$ Homogeneous solid solution of A and B.
$(A B)^{\text {liquid }}$ Homogeneous liquid solution of A and B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. Considering that $\bar{G}=\bar{H}-T \bar{S}$, which curve will "move" the most as T changes?
\qquad
\qquad
\qquad

Consider the effect of lowering the temperature slightly.

Figure 28-4: Figure 28-3 drawn at a slightly lower temperature.

Figure 28-5: Figure 28-4 drawn at an even lower temperature than Figure 28-3.
Question: Which combination is the most stable in Figure 28-5?
Hint: Consider that at equilibrium $\mu_{A}^{\text {liquid }}=\mu_{A}^{\text {solid }}$ and $\mu_{B}^{\text {liquid }}=\mu_{B}^{\text {liquid }}$

[^0]: ${ }^{28}$ The notation for binary alloys uses X_{A} and $X_{B}=1-X_{A}$ for the composition. Because, there is only one free composition variable, sometimes people will simply use " X " to represent the amount of the second component-in our case $X=X_{B}$.

