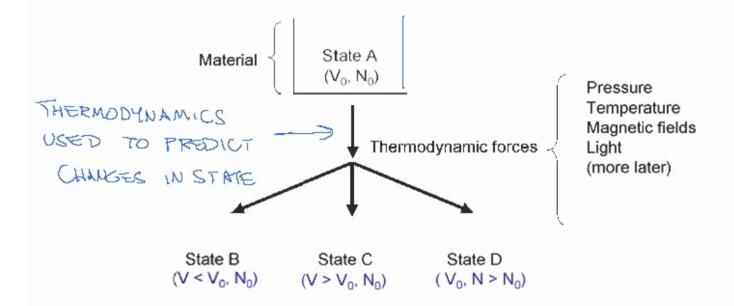
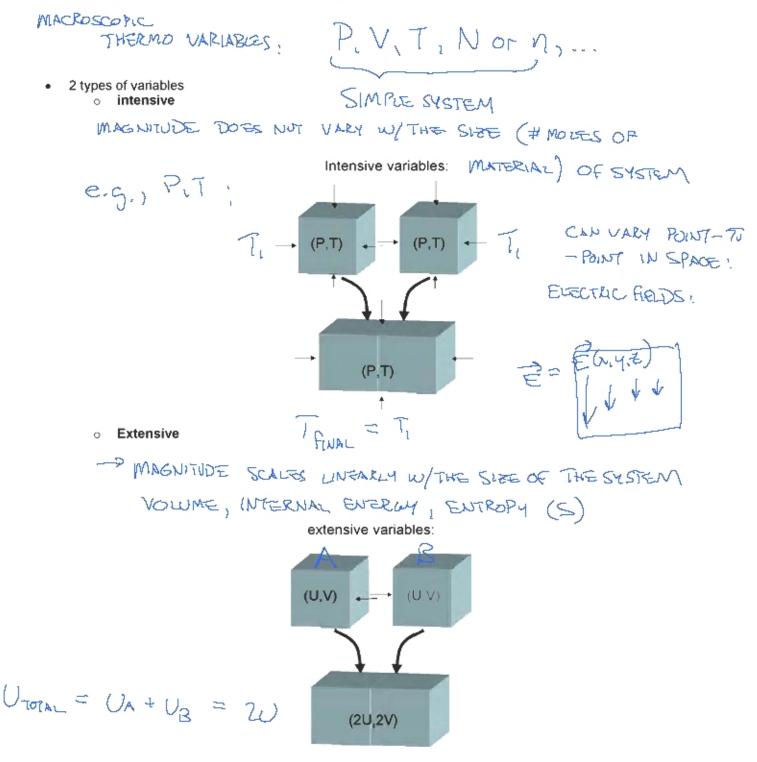
Lecture 2: 09.12.05 Fundamental concepts continued

Today:


LAST TIME	2
THERMODYNAMIC VARIABLES, SYSTEMS, AND FUNCTIONS	
Thermodynamic Variables	3
The constituents of materials: components and phases	4
Thermodynamic systems	8
IDENTIFICATION OF PROCESSES	
Types of processes	10
REVERSIBLE AND IRREVERSIBLE PROCESSES	
Reversible Processes	
Irreversible processes	
References	

Reading:

Engel and Reid: 1.4, 2.1, 2.2, 2.3


Last Time

Thermodynamic variables, systems, and functions

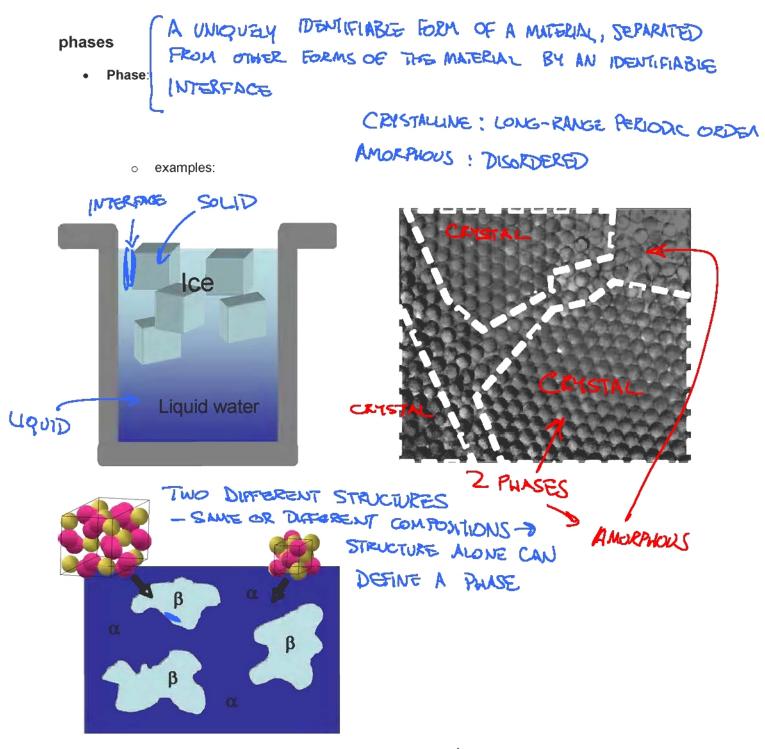
Thermodynamic Variables

· Remember that classical thermodynamics is concerned with macroscopic properties

INCREMENT PAYSICS : ENERGY] 2 = dwOF INORK FORCE' RESPONSE! HYDROSTATIC WORK!

- e.g. pressure and volume P <-> V
- the product of one intensive variables multiplied by its coupled extensive variables is work

.


The constituents of materials: components and phases

Components

The **components** are the irreducible molecules, compounds, or atoms that make up a system: •

4 of 13

Lecture 2 – introduction

	Stable phases of	of Fe ¹	
Stable temperature range (K)	Form of matter	Phase	Identification symbol of phase
> 3013	Gas	Gas	Gas
1812-3013	Liquid	Liquid	Liquid
1673-1812	Solid	Body-centered cubic	δ
1183-1673	Solid	Face-centered cubic	γ
< 1183	Solid	Body-centered cubic	ά

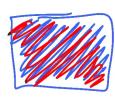
- Phases may have multiple components, and different phases may have the same components (though in different relative amounts). Phases, particularly solid phases, are often identified using Greek letters (as seen above for Fe- the solid phases are denoted δ, γ, and α).
- A multiphase system is one where the components of the system exist in multiple unique forms (structure or composition) within the system.
- Phases can have dimensions from macroscopic down to a few molecules:

Figure removed for copyright reasons.

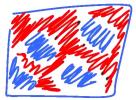
See Fig. 2 in Bockstaller et al. "Size-selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Copolymer/Particle Mixtures." *J. Amer. Chem. Soc.* 125 (2003): 5276-5277.

Figure removed for copyright reasons.

See Fig. 2 in Bockstaller et al. "Size-selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer /Particle Mixtures." *J. Amer. Chem. Soc.* 125 (2003): 5276-5277. Figure removed for copyright reasons.

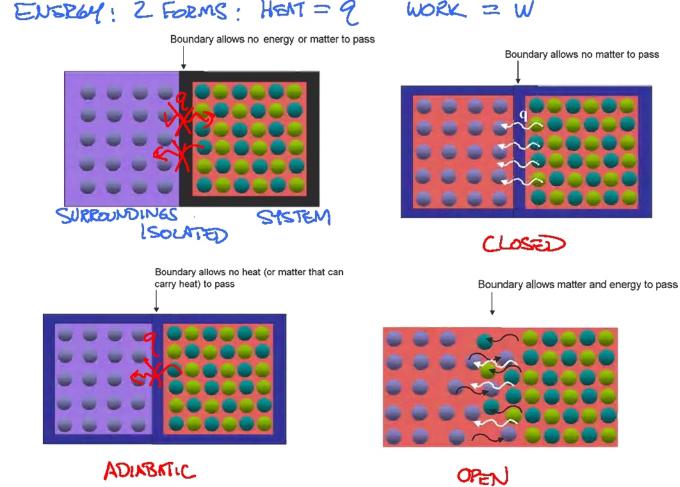

See p. 198 in Mann, S. *Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry.* New York, NY: Oxford University Press, 2001.

(Prof. Thomas' group: Bockstaller et al., *J. Amer. Chem. Soc.*, **125** (18): 5276-5277 2003) (Mann³) calcium carbonate crystals stacked with interleaving protein

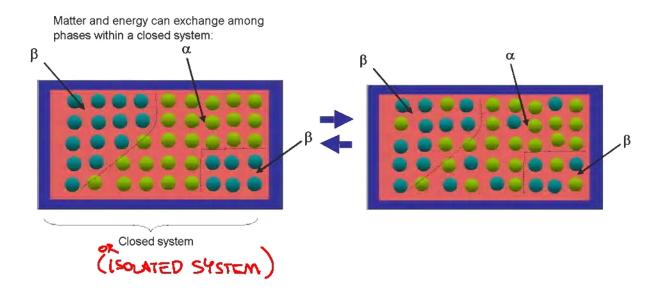

layers

- A few other useful definitions:
 - · Mixture: [NHOMOGENEOUS MULTI-PHASE SYSTEM WHERE THE COMPONENTS ARE NOT MIXED ON A MOLECULAR LEVEL
 - Solution:
 - ON A MOLECULAR LEVEL

SOUTION



MUTURE


Thermodynamic systems

 Thermodynamic systems can have boundary conditions that limit the exchange of energy or atoms/molecules with their surroundings. Some of the types of systems one may be interested in for materials science and engineering problems include:

System	Boundary condition:						
Isolated	NO ENERGY OR MODECULES IN/OUT OF THE SYSTEM						
Closed	NO MOLECULES IN/OUT						
Adiabatic	NO HEAT IN/OUT						
Open	MOLECUTES OR ENERGY CLU PASS IN/OUT OF SYSTEM						

• In closed multi-phase systems, molecules and energy can be exchanged among phases within the system:

Identification of processes

Types of processes

- We've stated that thermodynamics is a theory for predicting what changes will happen to a material/system. A key part of making correct predictions is identifying what processes can happen within the system.
 - \circ Several common processes include:⁴

Process type	Conditions					
Adiabatic	PROCESS WHERE NO HEAT PASSES BOUNDARIES					
	of sustem					
Isochoric	PROCESS WITH NO VOWME CHANGE					
Isothermal						
	PROCESS WITH NO TEMPERATURE CHANCE					
Isobaric	process AT CONSTANT P					
Isobarothermal	_ >					
PROCESS AT CONSTANT T.P						
> CORRECT	IDENTIFICATION OF PROCESS ALLOWS SIMPLIFICATION					
Examples of classifying a system and process: OF THERMODYNAMIC EXAMINES						

1. You place a thin metal film (your system) in an oven to anneal (equilibrate at elevated temperature).

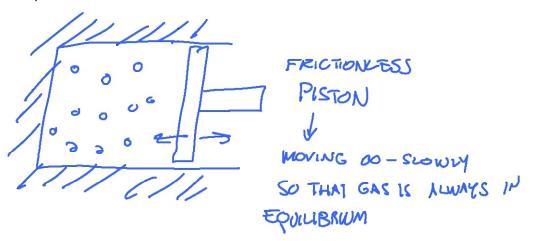
Type of System: CLo SED

1 SOBAROTHERMAL Process:

2. Your system is a cold glass of water, and you place it on your porch on a sunny day.

Type of System: OREN

Process:


ISOBARIC

Reversible and Irreversible Processes

Reversible Processes

- Reversible processes are idealized processes that:
 FRICTION
 VISCO SVEY

 STATEM IS ALWAYLS IN EQUILIBRIUM
 EVECTRICAL RESISTANCE
 HAVE NO DISS IPMINE PROCESSES
 / :
 (PROCESSES WHERE ENERGY AS HEM TO SURROUNDINGS /)
 Occur "forward" or "backward" with no change in the surroundings
- Examples:

Irreversible processes

Natural processes typically occur in only 1 direction spontaneously

```
ESSENTIALLY ALL REAL PROCESSES
```

o These are irreversible processes

Experiment	Process	Observation of irreversibility				
Add a drop of food coloring to a glass of water	DIFFUSION	DROBET NEVER REFORMS				
Expansion of a gas into a vacuum	•					
Cooling of a hot object placed in a cold room	•					
Melting of a solid at T = Tm + 100°	•					

Thus irreversible processes are driven in the one allowed direction by the second law

2ND LAW! ENTROPY OF UNWERSE MUST INCREASE! REVERSAL OF THESE PROCESSES WOULD LOWEL ENTROMY, .

References

1.	Reed-Hill, R. I	E. &	Abbaschian, I	R. Physica	ni Metallurgy	Principles	(PWS	Publishing,	Boston,	1994) 926 pp),

- 2. Allen, S. & Thomas, E. L. The Structure of Materials pp,
- 3. Mann, S. *Biomineralization: Principles and concepts in Bioinorganic Materials Chemistry* (Oxford University Press, New York, 2001) 198 pp,
- 4. Carter, W. C. 3.00 Thermodynamics of Materials Lecture Notes (2002).