Orientation - Fall 2005 Course 3 The Curriculum and **Careers in Materials Science and** Engineering

Prof. Caroline Ross

Chair of Undergraduate Committee

The Curriculum - Fall 2005

- 3.012 Fundamentals of MSE (5-0-10)
- 3.014 Materials Laboratory (1-4-7)
- 3.016 Mathematical Methods for MSE (3-1-8)

3.012 and 3.016 run for 9 weeks only. 3.014 runs for 4 weeks only. Since 3.012 and 3.014 do not run while 3.014 is running, there is no conflict with the meeting times.

3.012 is a REST

and 3.014 is a LAB and also satisfies CI-M

They could be taken separately but it is best to take them together.

3.016 can substitute for 18.03 in our curriculum. It is a 12-unit subject designed for MSE students who wish to learn about the math that is essential to MSE. This covers a range of math topics with emphasis on MSE examples, using Mathematica (R) as a vehicle. To find out more, see the web site: **http://pruffle.mit.edu/3.016/** \Box

3.016 can satisfy the computation requirement (one of 3.021J, 3.016, 1.00 or 6.001).

Spring Semester and later : required subjects for course 3 (3C is different, see handout)

3.022 Microstructural Evolution in Materials, 3-3-63.024 Electronic, Optical and Magnetic Properties of Materials, 3-3-6

3.021J Introduction to Modeling and Simulation, 3-0-9 REST

3.032 Mechanical Properties of Materials, 4-2-6
3.034 Organic and Biomaterials Chemistry, 4-2-6
3.042 Materials Project Laboratory, CI-M, 1-6-5
3.044 Materials Processing, 4-0-8

3.Th.U Thesis, 9-12 units OR 3.930 Industrial Practice, 6, plus 3.931 Industrial Practice, 6

Elective subjects for course 3 (3C is different, see handout)

- 3.069 Ceramics Processing,
- 3.07 Introduction to Ceramics,
- 3.15 Electrical, Optical and Magnetic Materials and Devices,
- 3.153 Introduction to Nanoscale Materials,
- 3.155J Micro/Nano Processing Technology, CI-M
- 3.14 Physical Metallurgy,
- 3.046 Thermodynamics of Materials,
- 3.048 Advanced materials processing,
- 3.063 Polymer Physics,
- 3.064 Polymer Engineering,
- 3.051J Materials for Biomedical Applications,
- 3.052 Nanomechanics of Materials and Biomaterials
- 3.072 Symmetry, Structure and Tensor Properties of Materials
- 3.073 Diffraction and Structure
- 3.080 Economic and Environmental Materials Selection

Careers

Our Department evolved from the original Course 4 (Geology and Mining) offered by MIT in 1865. Students learned about extraction of metals, and primarily joined the mining and metals industries. Through the 1950s, metallurgy (and ceramics) were the strongest part of the Department, and most graduates would have gone into the metals industry. However, in the 1960s, a 'Materials Science' subject was offered, and the range of materials studied here expanded to include electronic materials and polymers.

Graduates now enter a huge range of industries and careers, and not just those related to materials production.

Back in 1974, there were 37 undergrad students majoring in course 3. In 1981 there were 146 (40% women). This year we have about 130 undergrad students (>half women) and 37 faculty.

COURSES OF INSTRUCTION.

31

III. - MINING ENGINEERING AND METALLURGY.

(METALLURGY.)

FIRST YEAR COMMON TO ALL COURSES. SEE PAGE 23.

SECOND YEAR.

FIRST TERM.		SECOND TERM.
N	umber	Number
Physics	155	Differential Calculus
German	73	English Literature
Analytic Geometry	20	Physics 155
Political Economy	95	German
Analytical Chemistry	126	Determinative Mineralogy
Options.		Options
Descriptive Geometry Principles of Mechanism	52 240	3. { Mechanism; Drawing 243 Analytical Chemistry (elec-
Blowpipe Silver Assay (elec-		(tive) 126
(tive)	290	4. Analytical Chemistry 126
Theoretical Chemistry	127	. ,
4 Blowpipe Silver Assay	290	

The course 3 catalog page, 1889

(from Metallurgy and Materials Science and Engineering at MIT: 1865-1988, M. Bever)

THIRD YEAR.

FIRST TERM.	SECOND TERM
Analytical Chemistry, Lectures	Analytical Chemistry, Lectures
and Laboratory 129	and Laboratory
German	Assaving 203
Physics : Heat 159	German
Physical Laboratory 160	Physical Laboratory 160
Options.	
Integral Calculus 23	Options.
General Statics 41	Strength of Materials, Kine-
3. { Steam Engineering ; Thermo-	matics, and Dynamics 42
dynamics	³ Steam Engineering 248
Drawing	Engineering Laboratory 253
[Electricity	[Industrial Chemistry 130
Industrial Chemistry 130	4. { Industrial Laboratory 139
4. { Industrial Laboratory 139	Theoretical Chemistry 128
Drawing.	(English
English	577 1

FOURTH YEAR.					
FIRST TERM. Heat Measurements 171 Dynamo Machinery 186 Metallurgy 294, 295 Ore-Dressing 294, 295 Ore-Dressing 298 Memoirs. English Criticism. Options. 0ptions. Strength of Materials; Friction 43 Steam Engineering 213 Engineering Laboratory 259 Mining and Metallurgical Laboratory 296 Analytical Chemistry 133 Electro-metallurgy. 133 Prawing. Metallurgical Laboratory 296	SECOND TERM. Metallurgy				

This is what you might have done in the 1950s and 60s

measuring gas content in molten metal

Prof. Kingery demonstrating the strength of ice in the Ice Lab

In the 2000s, we study a wide range of materials - polymers and biomaterials, electronic materials, ceramics, metals, and diverse applications of all these different materials. We also offer a degree in Materials and Archaeology (3C) which explores the interaction between materials and human societies.

In 2003 we started a new undergraduate curriculum, and opened a new laboratory on the Infinite Corridor.

Careers

In the 21st century, what do graduates of the Department end up doing with their lives?

Some Companies employing recent alums:

Alcoa	Life Scan, Inc
Allied Signal	Meadox Medicals
Applied Materials	MedSource Technologies
Battelle	Medtronic, Inc.
BD Product Development	Michigan Con
Boston Acoustics	Molten Metal Tech.
Bristol Myers	Motorola
Case Corp	National Semiconducter
Celanese	Novellus Systems
Cytec Eng'g. Mats.	Oracle Corp. PPG Industries
Delphi Automotive Systems	Polaroid
E. Ink	Proctor& Gamble
Flint Ink	Pure Tech Ventures
Ford Motor Co.	Raychem
General Electric	Saudi Aramco
Gillette	Seagate
Hewlett-Packard	Syncra Systems
IBM	Turner Contruction
Intel	Advent Software
IronRhino Inc.	Intel
KLA-Tencor Copr.	Surface Logix, Inc

Government Labs employing recent alums:

Draper Laboratories Lincoln Labs Los Alamos Nat'l Labs Peace Corps US Navy US Air Force

and Consulting firms

Accenture **Bain & Company Bingham Dana** Citibank **Coopers & Lybrand** Deloitte & Touche **Exchange** Partners Fletcher Spaght **Finnegan Henderson** Fish & Richardson Gemini Consulting Heckler Law Group, The J.P. Morgan Lehman Brothers Main St. Merchants McKinsey & Co Millburn Corp. Morgan Stanley NIB Capitol Private Equity Putnam Hayes & Bartlett

Some universites where our S.B. students have gone on to graduate school:

Albert Einstein Medical College	Purdue University
Arizona State University	Stanford University
Brown University	University of California, Brekeley
Caltech	University of California, Santa Barbara
Carnegie-Mellon University	University of Illinois - Urbana
Cornell University	University of Massachusetts - Amherst
Duke	University of Michigan
Harvard Business School	University of Minnesota
Johns Hopkins University	University of Texas
Massachusetts Institute of Technology	University of Utah
MIT Sloan School	University of Virginia
Northwestern University	Wellesley College

Salaries for DMSE graduates, in \$k per annum

http://web.mit.edu/career/www/salary.html

Year, degree	Salary range	# of data points
2005	63 - 100k	24
2004 SB	47 - 58k	2
PhD	80 - 93k	5
2003 SB	43 - 52k	3
SM	66 - 90k	3
MEng	50 - 75k	3
PhD	87k	1

Some Course 3 Alums who made it big

Alan Bufferd, the Treasurer of MIT (runs a \$7B endowment) Dave Hill, CEO of Huber Chemical David Ragone, former President of Case Western Jeff Kohr, VP of EMS (Eastern Mountain Sports) Steve Palmer, multi\$M investment banker Jenine Nell, consultant at Exponent, \$750/hr Harold Brown, the biggest landlord in Boston in the 80s Dick Simmons, former executive in Allegheny Ludlum, worth \$1B John Chipman, revolutionized steelmaking and uranium processing Sheldon Roberts, a founder of National Semiconductor Gene Myron, Intel Fellow Stavros Salapatos, steel magnate

Some final thoughts

Career paths now are much more diverse in the past, and most people have several careers during their lives. There are many possible career choices for anyone taking either the 3 or 3C degree in Materials Science and Engineering.

Course 3 has an Industrial internship option for students interested in working in industry over the summers.

Course 3A is often taken by students interested in pre-med, prelaw or pre-business, and gives more flexibility in subject selection.

Your advisor can help you out with choosing subjects if you have a particular career in mind. Remember to make use of the MIT career services, http://web.mit.edu/career/www/.