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OBJECTIVES 
 

 Review miscibility gaps in binary systems 
 Introduce statistical thermodynamics of polymer solutions 
 Learn cloud point technique for experimentally determining miscibility gaps 
 Study effect of chain length on miscibility of polymer-solvent mixtures  

 
 
SUMMARY OF TASKS 
 
1) Prepare solutions of polystyrene / methyl cyclohexane of varying concentration 
2) Measure cloud points of prepared solutions by light scattering methods 
3) Compare results to values published in archival literature 
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BACKGROUND 
 
In 3.012 we’ve studied how ideal solutions of two components tend to mix together to 
increase the total entropy of the system, while regular solutions can have a miscibility 
gap in which the system phase separates into 2 distinct compositions of the same 
structure.   
 
This lab will explore how this tendency is affected when one component is a 
macromolecule or polymer, and experimentally determine phase diagrams for the 
polymer-solvent system polystyrene-methyl cyclohexane. 
 
 
Recall from 3.012 that the molar Gibb’s free energy for an ideal mixture is given by: 
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where C is the number of components in the mixture and Xi  is the mole fraction of the 
ith component, whose chemical potential is given by: 
 

,0 lni i RT X iμ μ= +  
 
For an A-B mixture: 
 

,0 ,0ln lnsol A A A A B B BG X X RT X X X RTμ μ= + + + BX  
 
In the heterogeneous (demixed) state, the free energy is given by the sum of the free 
energies of the unmixed components: 
 

,0 ,0heter A A B BG X Xμ μ= +  
  
The change in molar free energy on mixing is thus given by: 

G

BX  

heterG  

solG  

 

( )ln lnmix A A B BG RT X X X XΔ = +  
 
 
In an ideal solution, the mixing enthalpy is zero so that: 
 

mix mixG T SΔ = − Δ  
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( )ln lnmix A A B BS R X X X XΔ = − +  
 
 
The ideal solution remains miscible at any temperature because the change in free 
energy on mixing is zero.  
 
 
The ideal solution can be contrasted with a regular solution.  In a regular solution, 
interactions between components result in a mixing enthalpy given by: 
 

mix A BH X XΔ = Θ  
 
 
The total change in free energy is then: 
 
 

( )ln lnmix A A B B A BG RT X X X X X XΔ = + + Θ  
 
 
For Ω  > 0, a regular solution can undergo phase separation as temperature decreases.  
The two-phase region of the T-composition phase diagram is known as a misibility gap. 
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The boundary between the one- and two-phase regions which defines the miscibility 
gap is obtained by: 
 

[ ]( ) ( )ln ln 1 1 2 0mix
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The critical point occurs at: 
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An example of a miscibility gap is found in the Ir-Pd phase diagram, shown below.  In 
the solid state, mixtures of iridium and palladium exhibit an FCC structure. Above 1450 
°C, the system is single phase.  Below this temperature, however, is a miscibility gap 
where the system splits into separate Pd-rich and Rh-rich compositions.  Similar to the 
regular solution model above, the critical composition is near 50 at%  (MIr=192.2 g/mol; 
MPd=106.4 g/mol).  Plotting the phase diagram in weight fraction introduces asymmetry 
to the miscibility gap. 
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How does the result change for polymer solutions? 
 
Polymers are long chain molecules of repeating chemical units called monomers.  The 
molecular weight of a polymer increases with the number of monomers per chain.   
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Polystyrene  
 
 
For polymers, molecular weights typically range from 10,000 g/mol to 1M g/mol while 
solvents have molecular weights typically ~100 g/mol.   
 
 
For given mass ratio of polymer and solvent, m , the molar fraction of polymer is: /mP S
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while that of the solvent is: 
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where M  is the solvent molecular weight, Ms mer is the molecular weight of the monomer 
repeat unit and N is the number of repeat units. 
 
Table 1 gives values of X  for given values of m /mp P S and N.  For equal mass fractions, 
the mole fraction is increasingly asymmetric, introducing similar asymmetry into the 
phase diagram.  We can see this qualitatively by calculating mixSΔ for the ideal solution.   
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N  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mP/mS wp= 
mP/(mS+mp)

X /R   (K-1) mixSΔp

(ideal soln) 
100 0.1 0.0909 0.0010 0.008 

100 0.2 0.1667 0.0012 0.009 

100 0.5 0.3333 0.0050 0.031 

100 1 0.5000 0.0099 0.056 

100 2 0.6667 0.0196 0.096 

100 5 0.8333 0.0476 0.191 

100 10 0.9090 0.0909 0.305 

100 50 0.9804 0.3333 0.636 

100 100 0.9901 0.5000 0.693 

100 1000 0.9990 0.9091 0.305 

1000 1 0.5000 0.0010 0.008 

1000 2 0.6667 0.0020 0.014 

1000 5 0.8333 0.0050 0.031 

1000 10 0.9090 0.0099 0.056 

1000 100 0.9901 0.0909 0.305 

1000 500 0.9980 0.3333 0.636 

1000 1000 0.9990 0.5000 0.693 

1000 10000 0.9999 0.9091 0.305 

1 0.1 0.0909 0.0909 0.305 

1 0.2 0.1667 0.1667 0.451 

1 0.5 0.3333 0.3333 0.636 

1 1 0.5000 0.5000 0.693 

1 2 0.6667 0.6667 0.636 

1 5 0.8333 0.8333 0.451 

1 10 0.9090 0.9090 0.305 
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As the polymer chain length increases, there is less entropy gained by adding small 
amounts of polymer (e.g., by weight) into solvent compared to that gained by adding 
small amounts of solvent to polymer.  This introduces strong asymmetry to the phase 
diagram. 
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Although qualitatively correct in showing that entropy of mixing diminishes with 
increasing chain length, the regular solution model cannot rigorously be applied to 
polymer mixtures and solutions.  An improved model for predicting phase behavior of 
polymer solutions was put forth by P.J. Flory,1 who won the Nobel Prize for his 
contributions to polymer science.  Flory’s model employs statistical mechanics, a field 
that connects macroscopic behavior to the microscopic properties of systems. His 
model builds off the statistical mechanics development of the regular solution model. 
 
Consider, for example, a small molecule mixture of nA molecules of component A and 
nB molecules of component B.  The number of distinguishable ways we could arrange 
these components on a lattice of n +n  sites is:  A B
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For example, the total number of  

 
 

configurations for a system with 
n  = 4 and n =2 is: A B
 

6! 15
4!2!

Ω = =  

 

 7



 
 
The entropy of the system is related to the number of configurations of the system Ω by: 
 

lnS k= Ω  
 

-23where k is Boltzmann’s constant, k = R/N  J/K.  Using Stirling’s formula: = 1.381×10Av
 
 

ln( !) lnx x x x= −  
 
 
we obtain the total entropy for the system:   
 

ln lnA B
sol A B

A B A
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In the heterogeneous state, the number of distinguishable B configurations is: 
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and similarly for A.  The change in entropy on mixing is given by subtracting off the pure 
state entropy.  For the small molecule mixture:   
 

[ ]ln lnmix sol heter A A B BS S S k n X n XΔ = − = − +     
 
 
Since our molecules A and B have equal volume, we can also write:  
 
 

[ ]ln lnmix A A B BS k n nφ φΔ = − +  
 
Or, per lattice site we have: 
 

[ ]ln lnmix A A B Bs k φ φ φ φΔ = − +  
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and ν  is the volume of the lattice site. ο

 
For polymer solutions, we can use a similar lattice model to obtain the entropy of 
mixing, according to the model developed by Flory1.   Here we consider a polymer 
whose segmental volume is equal to the volume of a lattice site.  Due to the connectivity 
of the segments, the number of configurations available to the system decreases. 
 
 

 
 
 
For a mixture of n  polymers and nc s solvent molecules, the total number of lattice sites is 
now:  
 

o pN n N n= +  
 
 
where N is the degree of polymerization of the polymer, i.e., the number of segments 
per chain.    
 
Incorporating connectivity into the placement of the polymer segments, the total number 
of ways of arranging the system was first shown by Flory to be1: 
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where z is the number of neighbors in the lattice. 
 
Again applying Stirling’s formula, we obtain the total entropy for the system:  
 
 

( ) 1ln ln 1 lnps
sol s p p

s p s p

nn zS k n n kn N
n Nn n Nn e

⎡ ⎤ −⎡ ⎤= − + + −⎢ ⎥ ⎢ ⎥+ + ⎣ ⎦⎢ ⎥⎣ ⎦
 
 
Setting ns = 0 in the above expression gives the entropy associated with the various 
configurations of the polymer coil: 
 
 

( )1 1ln 1 lnpol p p
zS k n kn N

N e
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We are interested in the entropy gained by mixing solvent and polymer molecules 
together: 
 
 

        mix sol polS S SΔ = −
 

ln lnmix s s p pS k n nφ φ⎡ ⎤Δ = − +⎣ ⎦  
 
 
If we consider the entropy of mixing per site,2 

 

ln lnps
mix s p
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Here we see quantitatively the effect of chain length on molecular weight.  As N 
increases, the amount of entropy gained by mixing the polymer into the solvent is 
reduced by 1/N. 
 
 
The enthalpy of mixing is analogous to that obtained for the regular solution model for 
atomic mixtures.  In the demixed or phase-separated state, the total interaction energy 
can be obtained by counting the number of pair-wise interactions between monomer-
monomer and solvent-solvent pairs:3 

 
1 1
2 2

  

heter p pp s ssH n N z n zε ε⎛ ⎞ ⎛= × + ×⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
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where εii is the attractive (negative) interaction energy of the j-j pair.  In the mixed state, 
the energy is calculated as: 
 

1 1 1
2 2 2

1
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where the volume fractions account for the reduced probability of the adjacent site being 
a polymer (φ ) or solvent (φp s) species.  The change in enthalpy on mixing per site is 
given as: 
 

( )2
2

sol heter
mix sp ss pp s p

o

H H zh
N

ε ε ε φ φ−
Δ = = − −  

   
The resulting expression for the free energy of mixing per site can be written as2: 
 

ln lnpmix
s s p

g
kT N s p

φ
φ φ φ χΔ

= + + φ φ   

 
where χ is known as the Flory-Huggins interaction parameter, defined as: 
 

 11



2
ss pp

sp s
z

kT
ε ε

pχ ε φ
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

φ  

Phase diagrams can be constructed by taking the derivative of the free energy with 
respect to φ.  The boundary of the miscibility gap, also called the binodal or coexistence 
curve, is defined by: 
 

0mix

p

g
φ

∂Δ
=

∂  

 
The limit of stability of the one phase mixture, called the spinodal, is obtained by 
equating the second derivative of the F-H free energy to zero:  
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For values of χ > χs (or T < Ts), the solution will spontaneously decompose into 
polymer-rich and solvent-rich phases.2 It is debated whether cloud point measurements 
are a measure the spinodal rather than the coexistence curve.  Between the spinodal 
and coexistence lines, demixing occurs by nucleation and growth mechanisms.   
 
The critical point is the extrema of the spinodal: 
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The critical concentration of polymer in a polymer-solvent mixture scales as N-1/2.  Note 
that the critical temperature (defined by χcr) is also fixed, in accordance with the phase 
rule. 
 
 
The Flory-Huggins free energy of mixing expression can be used to calculate phase 
diagrams of polymer solutions using the using the Hildebrand solubility parameter 
formalism4: 

2( )
v p s

kT
δ δ

χ
−

=    

 
where v is an averaged volume of the polymer segment and solvent species, and  

 is the solubility parameter of species j.  δj For the system investigated here, the solubility 
parameter value is 17.52 (MPa)1/2 for polystyrene and 16 (MPa)1/2 for methyl 
cyclohexane.5 

  
Previous studies investigating phase diagrams of polystyrene-methyl cyclohexane are 
described in the archival literature.6-8 Recently, this system has also been exploited for 
microencapsulation.9 
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