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Oct. 12 2005: Lecture 11: 

Geometry and Calculus of Vectors 

Reading:

Kreyszig Sections: 8.1 (pp:401–06) , 8.2 (pp:408–413) §8.3 (pp:414–21) 8.4 (pp:423–27)
§ § §

Vector Products 
The concept of vectors as abstract objects representing a collection of data has already been 
presented. Every student at this point has already encountered vectors as representation of 
points, forces, and accelerations in two and three dimensions. 

Mathematica r� Example: Lecture11 
Solution to 2D Diffusion Equation for Point Source Initial Conditions 

Flux as a vector field derived from concentration 

∂C ∂C 
J� = −D( , )

∂x ∂y 

Visualizing vector fields 
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Review: The Inner (dot) product of two vectors and relation to projection . . . . . . . . . . . . 
An inner (or dot) project is multiplication of two vectors that produces a scalar. 

cqkcq 

�a �b ≡· 
≡aibi � 

1 if i = j
aibj δij where δij ≡ 

0 otherwise
≡

⎛
⎜⎜⎜⎝


⎞
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b1 

b2 ≡(a1, a2, . . . aN ) (111). . . 
bN 

a1 

a2 

⎛
⎜⎜⎜⎝


⎞
⎟⎟⎟⎠


≡(b1, b2, . . . bN ) . . . 
aN 

The inner product is: 

linear, distributive (k1�a + k2 
�b) · �c = k1�a �c + k2 

�b �c · · 
symmetric �a �b = �b �a · · 
satifies Schwarz inequality ��a � �a�· b� ≤ ��b��
satifies triangle inequality ��a + � �b�+ �a�b� ≤ ��

If the vector components are in a cartesian (i.e., cubic lattice) space, then there is a useful 
equation for the angle between two vectors: 

�a �b 
cos α = 

· 
= n̂ n̂b (112) 

��a���b� 
a · 

where n̂i is the unit vector that shares a direction with i. Caution: when working with vectors 
in noncubic crystal lattices (e.g, tetragonal, hexagonal, etc.) the angle relationship above does 
not hold. One must convert to a cubic system first to calculate the angles. 
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The projection of a vector onto a direction n̂b is a scalar: 

p = �a n̂b (113)· 

The vector product (or cross ×) differs from the dot (or inner) product in that multiplication 
produces a vector from two vectors. One might have quite a few choices about how to define 
such a product, but the following idea proves to be useful (and standard). 

normal Which way should the product vector point? Because two vectors (usually) define a 
plane, the product vector might as well point away from it. 

The exception is when the two vectors are linearly dependent; in this case the product 
vector will have zero magnitude. 

The product vector is normal to the plane defined by the two vectors that make up the 
product. A plane has two normals, which normal should be picked? By convention, the 
“righthandrule” defines which of the two normal should be picked. 

magnitude Given that the product vector points away from the two vectors that make up the 
product, what should be its magnitude? We already have a rule that gives us the cosine 
of the angle between two vectors, a rule that gives the sine of the angle between the two 
vectors would be useful. Therefore, the cross product is defined so that its magnitude 
for two unit vectors is the sine of the angle between them. 

cqkcq 

This has the extra utility that the cross product is zero when two vectors are linearly
dependent (i.e., they do not define a plane). 

This also has the utility, discussed below, that the triple product will be a scalar quantity 
equal to the volume of the parallelepiped defined by three vectors. 

Review: Vector (or cross) products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Mathematica r� Example: Lecture11 
Example of a Cross Product 

Matrix form of cross product 

⎞
⎠ 

ˆî ĵ k 
�a × �b = det a

b1

1 a
b2

2 a
b3

3 

⎛
⎝ 

The triple product, 

�a · (�b × �c) = (�a � �c = × b) · 
c� sin γb−c cos γa−bc = (114)a���b���

c� sin γa−b cos γab−ca��b���

where γi−j is the angle between two vectors i and j and γij−k is the angle between the vector 
k and plane spanned by i and j. is equal to the parallelepiped that has �a, �b, and �c, emanating 
from its bottomback corner. 

If the triple product is zero, the volume between three vectors is zero and therefore they 
must be linearly dependent. 

Derivatives Vectors 
Consider a vector, �p, as a point in space. If that vector is a function of a real continuous 
parameter for instance, t, then �p(t) represents the loci as a function of a parameter.


If �
p(t) is continuous, then it sweeps out a continuous curve as t changes continuously. It is 
very natural to think of t as time and �p(t) as the trajectory of a particle—such a trajectory 
would be continuous if the particle does not disappear at one instant, t, and reappear an 
instant later, t + dt, some finite distance distance away from �p(t).


If �
p(t) is continuous, then the limit: 

p(t) � p(t)d� p(t + Δt) − �
= lim (115)

dt Δt 0 Δt→

Notice that the numerator inside the limit is a vector and the denominator is a scalar; so, the 
derivative is also a vector. Think about the equation geometrically—it should be apparent 
that the vector represented by the derivative is locally tangent to the curve that is traced out 
by the points � p(t) �p(t − dt), � p(t + dt), etc. 
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Mathematica r� Example: Lecture11 
Vector Derivatives 

Visualizing a vector curve and its derivative 

Review: Partial and total derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
One might also consider a time and spacedependent vector field, for instance �E(x, y, z, t) = 

cqkcq 

E(�x, t) could be the force on a unit charge located at �x at time t. 
Here, there are many different things which might be varied and give rise to a derivative. 

Such questions might be: 

1. How does the force on a unit charge differ for two nearby unitcharge particles, say at 
(x, y, z) and at (x, y + Δy, z)? 

2. How does the force on a unit charge located at (x, y, z) vary with time? 

3. How does the the force on a particle change as the particle traverses some path (x(t), y(t), z(t)) 
in space? 

Each question has the “flavor” of a derivative, but each is asking a different question. So a 
different kind of derivative should exist for each type of question. 

The first two questions are of the nature, “How does a quantity change if only one of its 
variables changes and the others are held fixed?” The kind of derivative that applies is the 
partial derivative. 

The last question is of the nature, “How does a quantity change when all of its variables 
depend on a single variable?” The kind of derivative that applies is the total derivative. The 
answers are: 

1. 
∂ � EE(x, y, z, t) 

� 
∂ �

� 

∂y 
= 

∂y 
(116) 

constantx,z,t 

2. 
∂ � EE(x, y, z, t) 

� 
∂ �

� 

= (117)
∂t ∂t 

constantx,y,z 
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3. 

d �
= 

E dx 
+ 

∂ �
+ 

E dz 
+ 

∂ �
= � �

EE(x(t), y(t), z(t), t) ∂ � E dy ∂ � E dt d�x ∂ �
E(�x(t), t)· + (118)

dt ∂x dt ∂y dt ∂z dt ∂t dt dt ∂t 

All vectors are not spatial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is useful to think of vectors as spatial objects when learning about them—but one shouldn’t 

cqkcq 

get stuck with the idea that all vectors are points in two or threedimensional space. The 
spatial vectors serve as a good analogy to generalize an idea. 

For example, consider the following chemical reaction: 
1Reaction: H2 2 O2 �� H2O 

Initial: 1 1 �� 0 The composition could be written as a vector: 
1During Rx.: 1 − ξ 1 − 
2 ξ �� ξ 

N =


⎛
⎝


moles H2 

moles O2 

⎞
⎠
=


⎛
⎝


1 − ξ 
1 − 1 ξ


⎞
⎠
 (119)

2 
moles H2O ξ


and the variable ξ plays the role of the “extent” of the reaction—so the composition variable 
N lives in a reactionextent (ξ) space of chemical species. 


