Differential Operations on Vectors

Reading:

Kreyszig Sections: $\S 8.10$ (pp:453-56) , §8.11 (pp:457-459)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood with reference to the "meaning" of a derivative from the calculus of scalar functions is very very large. Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that acts on a scalar and gives another scalar back:
gradient (∇) : A derivative on a scalar that gives a vector.
curl $(\nabla \times)$: A derivative on a vector that gives another vector.
divergence $(\nabla \cdot)$: A derivative on a vector that gives scalar.
Each of these have "meanings" that can be applied to a broad class of problems.
The gradient operation on $f(\vec{x})=f(x, y, z)=f\left(x_{1}, x_{2}, x_{3}\right)$,

$$
\begin{equation*}
\operatorname{grad} f=\nabla f\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) f \tag{13-1}
\end{equation*}
$$

has been discussed previously. The curl and divergence will be discussed below.

MATHEMATICA ${ }^{\circledR}$ Example: Lecture- 13
Gradient of a several $1 / r$ potentials

Three Electric Charges
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Divergence and Its Interpretation

© Coordinate Systems
The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to
work in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative operations $\nabla, \nabla \cdot$, and $\nabla \times$ have different forms. These other forms can be derived, or looked up in a mathematical handbook, or specified by using the Mathematica ${ }^{\circledR}$ package "VectorAnalysis."

Mathematica ${ }^{\circledR}$ Example: Lecture-13
Coordinate System Transformations
Converting between Cartesian and Spherical Coordinates with MATHEMATICA ${ }^{\circledR}{ }^{\circledR}$
\square

The divergence operates on a vector field that is a function of position, $\vec{v}(x, y, z)=\vec{v}(\vec{x})$ $=\left(v_{1}(\vec{x}), v_{2}(\vec{x}), v_{3}(\vec{x})\right)$, and returns a scalar that is a function of position. The scalar field is often called the divergence field of \vec{v} or simply the divergence of \vec{v}.

$$
\begin{equation*}
\operatorname{div} \vec{v}(\vec{x})=\nabla \cdot \vec{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(v_{1}, v_{2}, v_{3}\right)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot \vec{v} \tag{13-2}
\end{equation*}
$$

Think about what the divergence means,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Curl and Its Interpretation
The curl is the vector valued derivative of a vector function. As illustrated below, its operation can be geometrically interpreted as the rotation of a field about a point.

For a vector-valued function of (x, y, z) :

$$
\begin{equation*}
\vec{v}(x, y, z)=\vec{v}(\vec{x})=\left(v_{1}(\vec{x}), v_{2}(\vec{x}), v_{3}(\vec{x})\right)=v_{1}(x, y, z) \hat{i}+v_{2}(x, y, z) \hat{j}+v_{3}(x, y, z) \hat{k} \tag{13-3}
\end{equation*}
$$

the curl derivative operation is another vector defined by:

$$
\begin{equation*}
\operatorname{curl} \vec{v}=\nabla \times \vec{v}=\left(\left(\frac{\partial v_{3}}{\partial y}-\frac{\partial v_{2}}{\partial z}\right),\left(\frac{\partial v_{1}}{\partial z}-\frac{\partial v_{3}}{\partial x}\right),\left(\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}\right)\right) \tag{13-4}
\end{equation*}
$$

or with the memory-device:

$$
\operatorname{curl} \vec{v}=\nabla \times \vec{v}=\operatorname{det}\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \tag{13-5}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)
$$

Mathematica ${ }^{\circledR}$ Example: Lecture-13

Calculating the Curl of a Function

Consider the vector function that is often used in Brakke's Surface Evolver program:

$$
\vec{w}=\frac{z^{n}}{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n}{2}}}(y \hat{i}-x \hat{j})
$$

This can be shown easily, using Mathematica ${ }^{\circledR}$, to have the property:

$$
\nabla \times \vec{w}=\frac{n z^{n-1}}{\left(x^{2}+y^{2}+z^{2}\right)^{1+\frac{n}{2}}}(x \hat{i}+y \hat{j}+z \hat{k})
$$

which is spherically symmetric for $n=1$ and convenient for turning surface integrals over a portion of a sphere into a path-integral over a curve on a sphere.

1. Create vector function \vec{w} above and visualize using the PlotVectorField3D function in Mathematica ${ }^{\circledR}$'s PlotField3D package.
2. The function will be singular for $n>1$ along the z-axis, this singularity will be communicated during the numerical evaluations for visualization unless some care is applied.
3. Demonstrate the above assertion about \vec{w} and its curl.
4. Visualize the curl: note that the field is points up with large magnitude near the vortex at the origin.
5. Demonstrate that the divergence of the curl of \vec{w} vanishes for any n.

One important result that has physical implications is that a the curl of a gradient is always zero: $f(\vec{x})=f(x, y, z)$:

$$
\begin{equation*}
\nabla \times(\nabla f)=0 \tag{13-6}
\end{equation*}
$$

Therefore if some vector function $\vec{F}(x, y, z)=\left(F_{x}, F_{y}, F_{z}\right)$ can be derived from a scalar potential, $\nabla f=\vec{F}$, then the curl of \vec{F} must be zero. This is the property of an exact differential
$d f=(\nabla f) \cdot(d x, d y, d z)=\vec{F} \cdot(d x, d y, d z)$. Maxwell's relations follow from equation 13-6:

$$
\begin{align*}
& 0=\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}=\frac{\partial \frac{\partial f}{\partial z}}{\partial y}-\frac{\partial \frac{\partial f}{\partial y}}{\partial z}=\frac{\partial^{2} f}{\partial z \partial y}-\frac{\partial^{2} f}{\partial y \partial z} \\
& 0=\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}=\frac{\partial \frac{\partial f}{\partial x}}{\partial z}-\frac{\partial \frac{\partial f}{\partial z}}{\partial x}=\frac{\partial^{2} f}{\partial x \partial z}-\frac{\partial^{2} f}{\partial z \partial x} \tag{13-7}\\
& 0=\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{\partial \frac{\partial f}{\partial y}}{\partial x}-\frac{\partial \frac{\partial f}{\partial x}}{\partial y}=\frac{\partial^{2} f}{\partial y \partial x}-\frac{\partial^{2} f}{\partial x \partial y}
\end{align*}
$$

Another interpretation is that gradient fields are curl free, irrotational, or conservative.
The notion of conservative means that, if a vector function can be derived as the gradient of a scalar potential, then integrals of the vector function over any path is zero for a closed curve - meaning that there is no change in "state;" energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation, etc.

Another important result is that divergence of any curl is also zero, for $\vec{v}(\vec{x})=\vec{v}(x, y, z)$:

$$
\begin{equation*}
\nabla \cdot(\nabla \times \vec{v})=0 \tag{13-8}
\end{equation*}
$$

