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Nov. 04 2005: Lecture 18: 

The Fourier Transform and its Interpretations 

Reading:

Kreyszig Sections: 10.5 (pp:547–49) , 10.8 (pp:557–63) , 10.9 (pp:564–68) , 10.10 (pp:569–75)
§ § § §

Fourier Transforms 

Expansion of a function in terms of Fourier Series proved to be an effective way to represent 
functions that were periodic in an interval x ∈ (−λ/2, −λ/2). Useful insights into “what makes 
up a function” are obtained by considering the amplitudes of the harmonics (i.e., each of the 
subperiodic trigonometric or complex oscillatory functions) that compose the Fourier series. 
That is, the component harmonics can be quantified by inspecting their amplitudes. For 
instance, one could quantitatively compare the same note generated from a Stradivarius to an 
ordinary violin by comparing the amplitudes of the Fourier components of the notes component 
frequencies. 

However there are many physical examples of phenomena that involve nearly, but not 
completely, periodic phenomena—and of course, quantum mechanics provides many examples 
of isolated events that are composed of wavelike functions. 

It proves to be very useful to extend the Fourier analysis to functions that are not periodic. 
Not only are the same interpretations of contributions of the elementary functions that compose 
a more complicated object available, but there are many others to be obtained. 

For example: 

momentum/position The wavenumber kn = 2πn/λ turns out to be proportional to the 
momentum in quantum mechanics. The position of a function, f (x), can be expanded in 
terms of a series of wavelike functions with amplitudes that depend on each component 
momentum—this is the essence of the Heisenberg uncertainty principle. 

diffraction Bragg’s law, which formulates the conditions of constructive and destructive in
terference of photons diffracting off of a set of atoms, is much easier to derive using a 
Fourier representation of the atom positions and photons. 

To extend Fourier series to nonperiodic functions, the domain of periodicity will extended 
to infinity, that is the limit of λ → ∞ will be considered. This extension will be worked out 
in a heuristic manner in this lecture—the formulas will be correct, but the rigorous details are 
left for the math textbooks. 

Recall that the complex form of the Fourier series was written as: 

2πn 
∞

ıknxf (x) = 
� 

Akn e where kn ≡ 
λ 

n=� λ/2 
(181) 

1 

−∞ 

= knA
λ −λ/2 

f (x)e−ıknxdx 

where Akn is the complex amplitude associated with the kn = 2πn/λ reciprocal wavelength or 
wavenumber. 
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This can be written in a more symmetric form by scaling the amplitudes with λ—let 
kn kn /λ, then A = 

√
2πC

∞ √
2πCkn ıkn x 2πn 

f (x) = 
� 

e where kn
λ 

≡ 
λ 

n=−∞� λ/2 
(182) 

1 
= knC √

2π −λ/2 
f (x)e−ıkn xdx 

Considering the first sum, note that the difference in wavenumbers can be written as: 

2π 
Δk = kn+1 − kn = (183)

λ 

which will become infinitesimal in the limit as λ → ∞. Substituting Δk/(2π) for 1/λ in the 
sum, the more “symmetric result” appears, 

1 
∞

2πn 
f (x) = 

� 
Ckn e where kn√

2π 
ıknxΔk ≡ 

λ 
n=−∞ (184)� λ/21 

= knC √
2π −λ/2 

f (x)e−ıknxdx 

Now, the limit λ → ∞ can be obtained an the summation becomes an integral over a 
continuous spectrum of wavenumbers; the amplitudes become a continuous function of wave
numbers, C → g(k):kn 

1 
f (x) = √

2π 

� ∞ 

g(k)e ıkxdk 
−∞ (185)

1 
� ∞ 

f (x)e−ıkxdxg(k) = √
2π −∞ 

The function g(k = 2π/λ) represents the density of the amplitudes of the periodic functions 
that make up f (x). The function g(k) is called the Fourier Transform of f (x). The function 
f (x) is called the Inverse Fourier Transform of g(k), and f (x) and g(k) are a the Fourier 
Transform Pair. 

q cqckHigher Dimensional Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Of course, many interesting periodic phenomena occur in two dimensions (e.g., two spatial 
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dimensions, or one spatial plus one temporal), three dimensions (e.g., three spatial dimensions 
or two spatial plus one temporal), or more. 

The Fourier transform that integrates dx over all x can be extended straightforwardly √
2π 

to a two dimensional integral of a function f (�r) = f (x, y) by dxdy over all x and y—or to a 
2π 

r) dxdydz threedimensional integral of f (� √
(2π)3 

over an infinite threedimensional volume. 

A wavenumber appears for each new spatial direction and they represent the periodicities 
in the x, y, and zdirections. It is natural to turn the wavenumbers into a wavevector 

2π 2π 2π�k = (kx, ky , kz ) = ( , , ) (186)
λx λy λy 

where λi is the wavelength of the wavefunction in the ith direction. 
The three dimensional Fourier transform pair takes the form: 

1 k �f (�x) = 
��� ∞ 

g(�k)e ı
� ·xdkxdky dkz�

(2π)3 −∞ 
(187) 

k �xg(�k) = 
1 

��� ∞ 

f (�x)e−ı� · dxdydz �
(2π)3 −∞ 

Properties of Fourier Transforms 

Dirac Delta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Because the inverse transform of a transform returns the original function, this allows a 

cqkcq 

definition of an interesting function called the Dirac delta function δ(x − xo). Combining 
the two equations in Eq. 185 into a single equation, and then interchanging the order of 
integration: 

f (x) = 
1 
2π 

� ∞ 

−∞ 

�� ∞ 

−∞ 
f (ξ)e−ıkξ dξ

� 

e ıkxdk 

f (x) = 
� ∞ 

−∞ 
f (ξ) 

� 
1 
2π 

� ∞ 

−∞ 
e ık(x−ξ)dk

�
dξ 

(188) 

Apparently, a function can be defined 

δ(x − xo) = 
1 
2π 

� ∞ 

−∞ 
e ık(x−ξ)dk (189) 

that has the property 

f (xo) = 
� ∞ 

−∞ 
δ(x − xo)f (x)dx (1810) 
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in other words, δ picks out the value at x = xo and returns it outside of the integration. 

Parseval’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The delta function can be used to derive an important conservation theorem. 

cqkcq 

If f (x) represents the density of some function (i.e., a wavefunction like ψ(x)), the square
magnitude of f integrated over all of space should be the total amount of material in space. 

¯
� ∞ 

f (x)f (x)dx = 
� ∞ �� 

1 
g(k)e−ıkxdk

� � 
√1

2π
ḡ(κ)e−ıκxdκ

�� 

dx (1811)√
2π−∞ −∞ 

where the complexconjugate is indicated by the overbar. This exponentials can be collected 
together and the definition of the δfunction can be applied and the following simple result can 
is obtained � ∞ � ∞

¯f (x)f (x)dx = g(k)ḡ(k)dk = (1812) 
−∞ −∞ 

which is Parseval’s theorem. It says, that the magnitude of the wavefunction, whether it is 
summed over real space or over momentum space must be the same. 

Convolution Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The convolution of two functions is given by 

cqkcq 

1 
� ∞

F (x) = p1(x) � p2(x) = p1(η)p2(x − η)dη (1813)√
2π −∞ 

If p1 and p2 can be interpreted as densities in probability, then this convolution quantity can be 
interpreted as “the total joint probability due to two probability distributions whose arguments 
add up to x.”9 

The proof is straightforward that the convolution of two functions, p1(x) and p2(x), is a 
Fourier integral over the product of their Fourier transforms, ψ1(k) and ψ2(k): 

1 
� ∞ 

p1(x) � p2(x) = p1(η)p2(x − η)dη =
1 

� ∞ 

ψ1(k)ψ2(k)e 
ıkxdk (1814)√

2π 
√

2π−∞ −∞ 

This implies that Fourier transform of a convolution is a direct product of the Fourier trans
forms ψ1(k)ψ2(k). 

Another way to think of this is that “the net effect on the spatial function due two interfering 
waves is contained by product the fourier transforms.” Practically, if the effect of an aperture 

9To think this through with a simple example, consider the probability that two dice sum up 10. It is the 
sum of p1(n)p2(10 − n) over all possible values of n. 
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(i.e., a sample of only a finite part of real space) on a wavefunction is desired, then it can be 
obtained by multiplying the Fourier transform of the aperture and the Fourier transform of 
the entire wavefunction. 

Mathematica r� Example: Lecture18 
Creating Lattices for Subsequent Fourier Transform 

A diffraction pattern from a group of scattering centers such atoms is related to the 
Fourier transform of the “atom” positions: 

1. Create “pixel images” of lattices by placing ones (white) and zeroes (black) in 
a rectangular grid. 

2. This can be done by creating “white” matrix sets and “black” matrix sets and 
then copying them periodically into the rectangular region. 

3. Recursive copying operations will create a “perfect lattice.” 

Mathematica 
Discrete Fourier Transforms 

A Fourier transform is over an infinite domain. Numerical data is seldom infinite,

therefore a strategy must be applied to get a Fourier transform of data.

Discrete Fourier transforms (DFT) operate by creating a lattice of copies of the orig

inal data and then returning the Fourier transform of the result. Symmetry elements

within the data appear in the Discrete Fourier transform and are superimposed with

the Transform of the symmetry operations due to the virtual infinite lattice of data

patterns.

Because there are a finite number of pixels in the data, there are also the same finite

number of subperiodic wavenumbers that can be determined. In other words, the

Discrete Fourier Transform of a N × M image will be a data set of N × M wave

numbers:


1 2 N 
Discrete FT Data = 2π( , , . . . , )

Npixels Npixels Npixels 
1 2 M ×2π( , , . . . , )

Mpixels Mpixels Mpixels 

representing the amplitudes of the indicated periodicities. 

Visualizing Fourier Transorms 

r� Example: Lecture18 
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Fourier Transforms on Lattices with Thermal Noise 
Lattices in real systems not only contain defects, but also some uncertainty in the 
positions of the atoms because of thermal effects such as phonons. 

Fourier Transforms with defects 

Imaging from Selected Regions of Reciprocal Space 
To select and interpret different regions of Fourier space, a function will be produced 
that selects a particular region of the Fourier Space (i.e., as selected set of possible 
periodicities) and then visualize the BackTransform of only that region. 

Aperatures in kspace 

Mathematica Mathematica Mathematica Mathematica r� Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 

Mathematica Mathematica Mathematica Mathematica r� Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 



MIT 3.016 Fall 2005 � W.C Carter Lecture 18 c 119 

Taking Discrete Fourier Transforms of Images 
A image in graphics format, such as a .gif, contains intensity as a function of position. 
If the function is grayscale data, then each pixel typically takes on 28 discrete gray 
values between 0 and 255. This data can be input into Mathematica r� and then 
Fourier transformed. 

Importing images and Fourier Transforming them 

Mathematica Mathematica Mathematica Mathematica r� Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 � Example: Lecture18 


