1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012

Part II - Quantum Mechanical Methods : Lecture 2

Quantum Mechanics: Practice Makes Perfect

Jeffrey C. Grossman

IIIIT
Department of Materials Science and Engineering Massachusetts Institute of Technology

Part II Topics

2. Quantum Mechanics: Practice Makes Perfect

3. rrom many-Doay to single-rarticie, Quanturn mocentig of morecules
4. Application of Quantum Modeling of Molecules: Solar Thermal Fuels
5. Application of Quantum Modeling of Molecules: Hydrogen Storage
6. From Atoms to Solids
7. Quantum Modeling of Solids: Basic Properties
8. Advanced Prop. of Materials:What else can we do?
9. Application of Quantum Modeling of Solids: Solar Cells Part I

I O. Application of Quantum Modeling of Solids: Solar Cells Part II
| I. Application of Quantum Modeling of Solids: Nanotechnology

Motivation

electron in box

Image of NGC 604 nebula is in the public domain. Source: Hubble Space Telescope Institute (NASA). Via Wikimedia Commons.

Lesson outline

- Review
- A real world example
- Everything is spinning
- Pauli's exclusion

This image is in the public domain. Source: Wikimedia Commons.

- Periodic table of elements

Review:Why QM?

Problems in classical physics that led to quantum mechanics:

- "classical atom"
- quantization of properties
- wave aspect of matter
- (black-body radiation), ...

Review: Quantization

photoelectric effect

Image by MIT OpenCourseWare.

$$
\begin{gathered}
\boldsymbol{E}=\hbar\left(\boldsymbol{\omega}-\omega_{A}\right)=\boldsymbol{h}\left(\boldsymbol{\nu}-\nu_{A}\right) \\
\boldsymbol{h}=\mathbf{2 \pi} \hbar=\mathbf{6 . 6} \cdot \mathbf{1 0} 0^{-34} \text { Wattsec. }{ }^{2}
\end{gathered}
$$

Einstein: photon $\quad E=\hbar \boldsymbol{\omega}$

"Classical atoms"

problem:

accelerated charge causes radiation, atom not stable!
hydrogen atom

Liénard-Wiechert potential

From Wikipedia, the free encyclopedia

Liénard-Wiechert potentials describe the classical electromagnetic effect of a moving electric point
potentials describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in arbitrary motion, but are not corrected for quantum-mechanical effects. Electromagnetic radiation in the form of waves can be obtained from these potentials.

These expressions were developed in part by Alfred-Marie Liénard in 1898 and independently by Emil Wiechert in $1900{ }^{[1]}$ and continued into the early 1900 s.

The Liénard-Wiechert potentials can be generalized according to gauge theory.
The explicit expressions for potentials related to moving dipoles and quadrupoles in the same way as the Liénard-Wiechert potentials are related to a point charge were computed by Ribarič and Šušteršič in 1995. ${ }^{\text {[2] }}$

Implications

The study of classical electrodynamics was instrumental in Einstein's development of the theory of relativity. Analysis of the motion and propagation of electromagnetic waves led to the special relativity description of space and time. The LiénardWiechert formulation is an important launchpad into more complex analysis of relativistic moving particles.
The Liénard-Wiechert description is accurate for a large, independent moving particle, but breaks down at the quantum level.
Quantum mechanics sets important constraints on the ability of a particle to emit radiation. The classical formulation, as laboriously described by these equations, expressly violates experimentally observed phenomena. For example, an electron around an atom does not emit radiation in the pattern predicted by these classical equations. Instead, it is governed by

Review:Wave aspect

light
\section*{matter}

wave character

particle character

Image in public domain. See Wikimedia Commons.

Double-Slit

Courtesy of Bernd Thaller. Used with permission.

Review:Wave aspect

particle: \boldsymbol{E} and momentum $\overrightarrow{\boldsymbol{p}}$
wave: frequency ν and wavevector $\overrightarrow{\boldsymbol{k}}$

$$
\begin{aligned}
& E=h \nu=\hbar \omega \\
& \vec{p}=\hbar \overrightarrow{\boldsymbol{k}}=\frac{h}{\lambda} \frac{\vec{k}}{|\vec{k}|}
\end{aligned}
$$

de Broglie: free particle can be described a as planewave $\psi(\vec{r}, t)=A e^{i(\vec{k} \cdot \vec{r}-\omega t)}$ with $\lambda=\frac{h}{m v}$

Review: Interpretation of QM

$$
\begin{aligned}
& \psi(\vec{r}, t) \quad \longrightarrow \text { wave function (complex) } \\
& |\psi|^{2}=\psi \psi^{*} \longrightarrow \text { interpretation as probability to find particle! }
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} \psi \psi^{*} d V=1
$$

Wave Particles Hitting a Wall

Electron Wave/Particle Video

Review: Schrödinger

equation

a wave equation:
second derivative in space first derivative in time

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r, t)\right] \psi(r, t)=i \hbar \frac{\partial^{\vec{\prime}}}{\partial t} \psi(r, t)
$$

$$
\begin{aligned}
H & =-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r, t)= \\
& =\frac{p^{2}}{2 m}+V=T+V \quad \vec{p}=-i \hbar \nabla
\end{aligned}
$$

Schrödinger...

Following up on these ideas, Schrödinger decided to find a proper wave equation for the electron. He was guided by William R. Hamilton's analogy between mechanics and optics, encoded in the observation that the zero-wavelength limit of optics resembles a mechanical system-the trajectories of light rays become sharp tracks which obey Fermat's principle, an analog of the principle of least action. ${ }^{[6]}$ A modern version of his reasoning is reproduced in the next section. The equation he found is:

$$
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(x, t)+V(x) \Psi(x, t)
$$

Using this equation, Schrödinger computed the Hydrogen spectral series by treating a hydrogen atom's electron as a wave $\Psi(x, t)$, moving in a potential well V, created by the proton. This computation accurately reproduced the energy levels of the Bohr model.
However, by that time, Arnold Sommerfeld had refined the Bohr model with relativistic corrections. ${ }^{[7][8]}$ Schrödinger used the relativistic energy momentum relation to find what is now known as the Klein-Gordon equation in a Coulomb potential (in natural units):

$$
\left(E+\frac{e^{2}}{r}\right)^{2} \psi(x)=-\nabla^{2} \psi(x)+m^{2} \psi(x)
$$

He found the standing waves of this relativistic equation, but the relativistic corrections disagreed with Sommerfeld's formula. Discouraged, he put away his calculations and secluded himself in an isolated mountain cabin with a lover. ${ }^{[9]}$
While at the cabin, Schrödinger decided that his earlier non-relativistic calculations were novel enough to publish, and decided to leave off the problem of relativistic corrections for the future. He put together his wave equation and the spectral analysis of hydrogen in a paper in 1926. ${ }^{[10]}$ The paper was enthusiastically endorsed by Einstein, who saw the matter-waves as an intuitive depiction of nature, as opposed to Heisenberg's matrix mechanics, which he considered overly formal. ${ }^{[11]}$

[^0]
Review: Schrödinger

 equation

 equation}

H time independent: $\quad \psi(\vec{r}, t)=\psi(\vec{r}) \cdot f(t)$

$$
i \hbar \frac{\dot{f}(t)}{f(t)}=\frac{H \psi(\vec{r})}{\psi(\vec{r})}=\text { const. }=E
$$

$$
H \psi(\vec{r})=E \psi(\vec{r}) \quad \psi(\vec{r}, t)=\psi(\vec{r}) \cdot e^{-\frac{i}{\hbar} E t}
$$

time independent Schrödinger equation stationary Schrödinger equation

Particle in a box

boundary conditions

$$
\begin{equation*}
\psi(0)=\psi(L)=0 \tag{4}
\end{equation*}
$$

$\psi(x)=A \sin (k x)$
$\psi(L)=A \sin (k L)=0$

Schrödinger equation

$$
\begin{align*}
& -\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi(x)}{\mathrm{d} x^{2}}+V(x) \psi(x)=E \psi(x) \tag{1}\\
& -\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi(x)}{\mathrm{d} x^{2}}=E \psi(x) \tag{2}
\end{align*}
$$

general solution

$$
\begin{align*}
& \psi(x)=A \sin (k x)+B \cos (k x) \\
& E=\frac{k^{2} \hbar^{2}}{2 m} \tag{3}
\end{align*}
$$

It's rea!!

$\mathrm{Cu}-\mathrm{O}$ Bond
(experiment)

Screenshot of Scientific American article "Observing Orbitals" removed due to copyright restrictions; read the article online.

What's this good for?

Hydrogen: a real world example.

Image in the public domain.

The Hydrogen Future?

Images in the public domain.

History of Hydrogen

© ACS Publications. From: Grochala, W., and Peter P. Edwards. Chemical Reviews 104 (2004): 1283-1315. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

How large of a gas tank do we want?

Figure 1 © Toyota Motor Corporation, "Drop Test" © EDO Canada. All rights reserved. This content is excluded

The hydrogen atom

wave functions
possible energies

The hydrogen atom

stationary

Schrödinger equation $\quad \boldsymbol{H} \psi=\boldsymbol{E} \psi$

$$
[\boldsymbol{T}+\boldsymbol{V}] \psi=\boldsymbol{E} \psi
$$

The hydrogen atom

choose a more suitable coordinate system:

 spherical coordinates$$
\begin{aligned}
\psi(\vec{r}) & =\psi(x, y, z) \\
& =\psi(r, \theta, \phi)
\end{aligned}
$$

© R. Nave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The hydrogen atom

Schrödinger equation in spherical coordinates:

$$
\frac{-\hbar^{2}}{2 \mu} \frac{1}{r^{2} \sin \theta}\left[\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{\sin \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}\right]
$$

$$
+U(r) \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi)
$$

The hydrogen atom

solve by separation of variables:

© R. Nave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The hydrogen atom

The hydrogen atom

$R(r)$	Solution exists if and only if.....	$n=1,2,3 \ldots \ldots \ldots$ Main quantum number
$P(\theta)$	Solution exists if and only if...	$\mid=0,1,2,3 \ldots n-1$ Orbital quantum number
$F(\phi)$	Solution exists if and only if.....	$m_{I}=-I,-I+1, \ldots+I$ Magnetic quantum number

Image by MIT OpenCourseWare.

The hydrogen atom

quantum numbers

| n | 1 | m_{l} | $F(\phi)$ | $P(\theta)$ | $R(r)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | $\frac{1}{\sqrt{2 \pi}}$ | $\frac{1}{\sqrt{2}}$ | $\frac{2}{a_{0}{ }^{3 / 2}} e^{-r / a_{0}}$ |
| 2 | 0 | 0 | $\frac{1}{\sqrt{2 \pi}}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2 \sqrt{2} a_{0}{ }^{3 / 2}}\left[2-\frac{r}{a_{0}}\right] e^{-r / 2 a_{0}}$ |
| 2 | 1 | 0 | $\frac{1}{\sqrt{2 \pi}}$ | $\frac{\sqrt{6}}{2} \cos \theta$ | $\frac{1}{2 \sqrt{6} a_{0}{ }^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}}$ |
| 2 | 1 | ± 1 | $\frac{1}{\sqrt{2 \pi}} e^{ \pm i \phi}$ | $\frac{\sqrt{3}}{2} \sin \theta$ | $\frac{1}{2 \sqrt{6} a_{0}{ }^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}}$ |
| 2 | | | | | |

The hydrogen atom

standard notation for states:

"Sharp"	s	$I=0$	For example, if $n=2, I=1$,
"Principal"	p	$\mathrm{I}=1$	
"Diffuse"	d	$\mathrm{I}=2$	
"Fundamental"	f	$I=3$	

The hydrogen atom

quantum numbers

n l m_{l} $F(\phi)$ $P(\theta)$ $R(r)$ 1 0 0 $\frac{1}{\sqrt{2 \pi}}$ $\frac{1}{\sqrt{2}}$ $\frac{2}{a_{0}^{3 / 2}} e^{-r / a_{0}}$ 2 0 0 $\frac{1}{\sqrt{2 \pi}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2 \sqrt{2} a_{0}{ }^{3 / 2}}\left[2-\frac{r}{a_{0}}\right] e^{-r / 2 a_{0}}$ 2 1 0 $\frac{1}{\sqrt{2 \pi}}$ $\frac{\sqrt{6}}{2} \cos \theta$ $\frac{1}{2 \sqrt{6} a_{0}{ }^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}}$ 2 1 ± 1 $\frac{1}{\sqrt{2 \pi}} e^{+i \phi}$ $\frac{\sqrt{3}}{2} \sin \theta$ $\frac{1}{2 \sqrt{6} a_{0}{ }^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}}$

The hydrogen atom

http://www.orbitals.com/orb/orbtable.htm

Courtesy of David Manthey. Used with permission. Source: http://www.orbitals.com/orb/orbtable.htm.

l and m versus n

The hydrogen atom

Energies: $\quad E_{n}=\frac{-m e^{4}}{8 \varepsilon_{0}^{2} h^{2}} \frac{1}{n^{2}}=\frac{-13.6 \mathrm{eV}}{n^{2}} \quad n=1,2,3, \ldots$

The hydrogen atom

The hydrogen atom

Atomic units

$$
\mathrm{I} \mathrm{eV}=1.6021765^{-19} \mathrm{~J}
$$

I Rydberg $=13.605692 \mathrm{eV}=2.17987$ |9-18 J
| Hartree $=2$ Rydberg
| Bohr =5.29|772|-11 m

Atomic units (a.u.):
Energies in Ry
Distances in Bohr

Also in use: $1 \AA=10^{-10} \mathrm{~m}, \mathrm{~nm}=10^{-9} \mathrm{~m}$

Slightly Increased Complexity

Añảlytic solutions become extremely complicated, even for simple systems.

$$
\begin{aligned}
& x=0: \\
& 1+R=A+B \\
& i k-i k R=\kappa A-\kappa B \\
& x=a: \\
& A e^{\kappa a}+B e^{-\kappa a}=C e^{i k a}+D e^{-i k a} \\
& \kappa A e^{\kappa a}-\kappa B e^{-\kappa a}=i k C e^{i k a}-i k D e^{-i k a} \\
& x=a+b: \quad C e^{i k(a+b)}+D e^{-i k(a+b)}=F e^{\kappa(a+b)}+G e^{-\kappa(a+b)} \\
& i k C e^{i k(a+b)}-i k D e^{-i k(a+b)}=\kappa F e^{\kappa(a+b)}-\kappa e^{-\kappa(a+b)} \\
& x=2 a+b: \\
& F e^{\kappa(2 a+b)}+G e^{-\kappa(2 a+b)}=T e^{i k(2 a+b)} \\
& \kappa F e^{\kappa(2 a+b)}-\kappa G e^{-\kappa(2 a+b)}=i k T e^{i k(2 a+b)} \text {. }
\end{aligned}
$$

$$
H \psi(\vec{r})=E \psi(\vec{r})
$$

$$
\begin{aligned}
M_{11}= & \frac{1}{8 i k \kappa^{2}}\left(\left((\kappa+i k)^{3} e^{2 \kappa a}-(\kappa-i k)^{3} e^{-2 \kappa a}+2 i k V_{1}\right) e^{i k b}\right. \\
& \left.+\left(-(\kappa-i k) e^{2 \kappa a}+(\kappa+i k) e^{-2 \kappa a}-2 i k\right) V_{1} e^{-i k b}\right)
\end{aligned}
$$

$$
\begin{aligned}
M_{12}= & \frac{1}{8 i k \kappa^{2}}\left(\left((\kappa+i k) e^{2 \kappa a}-(\kappa-i k) e^{-2 \kappa a}-2 i k\right) V_{1} e^{i k b}\right. \\
& \left.+\left(-(\kappa-i k)^{3} e^{2 \kappa a}+(\kappa+i k)^{3} e^{-2 \kappa a}+2 i k V_{1}\right) e^{-i k b}\right)
\end{aligned}
$$

$$
\begin{aligned}
M_{21}= & \frac{1}{8 i k \kappa}\left(\left((\kappa+i k)^{3} e^{2 \kappa a}+(\kappa-i k)^{3} e^{-2 \kappa a}-2 \kappa V_{1}\right) e^{i k b}\right. \\
& \left.-\left((\kappa-i k) e^{2 \kappa a}+(\kappa+i k) e^{-2 \kappa a}-2 \kappa\right) V_{1} e^{-i k b}\right)
\end{aligned}
$$

$$
M_{22}=\frac{1}{8 i k \kappa}\left(\left((\kappa+i k) e^{2 \kappa a}+(\kappa-i k) e^{-2 \kappa a}-2 \kappa\right) V_{1} e^{i k b}\right.
$$

$$
\left.+\left(-(\kappa-i k)^{3} e^{2 \kappa a}-(\kappa+i k)^{3} e^{-2 \kappa a}+2 \kappa V_{1}\right) e^{-i k b}\right)
$$

Next? Helium!

r_{2}
$\boldsymbol{H} \psi=\boldsymbol{E} \psi$
$\left[H_{1}+H_{2}+W\right] \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)$

$$
\left[T_{1}+V_{1}+T_{2}+V_{2}+W\right] \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)
$$

$$
\left.\left[-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{1}}-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{2}}+\frac{e^{2}}{4 \pi \epsilon_{0} r_{12}}\right] \psi r_{1}, r_{2}\right)=E \psi\left(r_{1}, r_{2}\right)
$$

cannot be solved analytically
problem!

Solution in general?

Only a few problems are solvable analytically. We need approximate approaches:
perturbation theory
matrix eigenvalue
equation

Solution in general?

Perturbation theory:

small

$$
H=H_{0}+\lambda H_{1}
$$

wave functions and energies are known

wave functions and energies will be similar to those of H_{\circ}

Solution in general?

Matrix eigenvalue equation:

$$
\begin{gathered}
\psi=\sum_{i} c_{i} \phi_{i} \\
\text { expansion in } \\
\text { orthonormalized basis } \\
\text { functions }
\end{gathered}
$$

$$
\begin{aligned}
H \sum_{i} c_{i} \phi_{i} & =E \sum_{i} c_{i} \phi_{i} \\
\int d \vec{r} \phi_{j}^{*} H \sum_{i} c_{i} \phi_{i} & =E \int d \vec{r} \phi_{j}^{*} \sum_{i} c_{i} \phi_{i} \\
\sum_{i} H_{j i} c_{i} & =E c_{j} \\
\mathcal{H} \vec{c} & =E \vec{c}
\end{aligned}
$$

Everything is spinning ...

Image courtesy of Teresa Knott.

Everything is spinning ...

In quantum mechanics particles can have a magnetic moment and a "spin"

spinning charge

Everything is spinning ...

conclusion from the Stern-Gerlach experiment for electrons: spin can ONLY be UP down

Everything is spinning ...

 new quantum number: spin quantum number for electrons: spin quantum number can ONLY be

Spin History
I think you and Whlerbeck have been very lucky to get your spinning election prublioked and talked about before Pauli heard of it. It appears that more than a year ago Krone believed in the spinning election and worked out something; the frat person be showed it to was Pauli. Pauli ridiculed the whole thing so much that the fist peron become also the last and no one else heard amy thing of it. Which all goes to show that the infallibility of the Deity does not extend to his self styled vicar onearth.
Part of a letter by L.H. Thomas to Goudsmit on March 251926 (source: Wikipedia). from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Pauli's exclusions

principle

Two electrons in a system cannot have
the same quantum numbers!

Periodic table of elements

Connection to materials?

optical properties of gases

© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Review

- Review
- A real world example!
- Everything is spinning
- Pauli's exclusion

Lantanoidit
Aktinoidit
This image is in the public domain. Source: Wikimedia Commons

- Periodic table of elements

Literature

- Greiner, Quantum Mechanics: An Introduction
- Feynman,The Feynman Lectures on Physics
- wikipedia,"hydrogen atom", "Pauli exclusion principle", "periodic table", ...

MIT OpenCourseWare
http://ocw.mit.edu
3.021 J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modelling and Simulation Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: From Wikipedia. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

