Lecture Notes

Some lectures in the first half of this course are based on materials from Professor Yoel Fink.

SES # TOPICS LECTURE NOTES
Lec 1

Introduction and course overview

The Hamiltonian approach to classical mechanics: Analysis of a simple oscillator

Intro (PDF - 1.5MB)

Lecture 1 (PDF)

Lec 2 The Hamiltonian approach to classical mechanics: Analysis of vibrations in one-dimensional lattice Lecture 2 (PDF)
Lec 3 The Hamiltonian analysis of lattice vibrations: Phononic bandgap Lecture 3 (PDF)
Lec 4 Introduction to quantum mechanical way of thinking Lecture 4 (PDF)
Lec 5 Quantum mechanical systems and measurements: Observables Lecture 5 (PDF)
Lec 6 Quantum mechanical systems and measurements: Spectral decomposition Lecture 6 (PDF)
Lec 7 Quantum mechanical measurements: Symmetries, conserved quantities, and the labeling of states Lecture 7 (PDF)
Lec 8 Symmetries, conserved quantities, and the labeling of states: Angular momentum Lecture 8 (PDF)
Lec 9 The hydrogen atom Lecture 9 (PDF)
Lec 10 Waves in periodic potentials: Part I Lecture 10 (PDF)
Lec 11 Waves in periodic potentials: Part II Lecture 11 (PDF)
Lec 12 Band gap Lecture 12 (PDF)
Lec 13 Band diagrams Lecture 13 (PDF)
Lec 14 The free electron gas: Density of states Lecture 14 (PDF)
Lec 15 Fermi-Dirac distribution Lecture 15 (PDF)
Lec 16 Carriers in intrinsic semiconductors Lecture 16 (PDF)
Lec 17 Engineering conductivity through doping Lecture 17 (PDF)
Lec 18 The P-N junction (the diode) Lecture 18 (PDF - 1.8MB)
Lec 19-20 Light emitting diodes Lecture 19-20 (PDF)
Lec 21 Reminder / introduction to wave optics Lecture 21 (PDF)
Lec 22 Electromagnetic waves Lecture 22 (PDF)
Lec 23 Layered materials and photonic band diagrams Lecture 23 (PDF)
Lec 24 Origins of magnetization Lecture 24 (PDF)
Lec 25 Hysteresis in ferromagnetic materials Lecture 25 (PDF)
Lec 26 Magnetic domains Lecture 26 (PDF)
Lec 27 Course summary and review for final exam Lecture 27 (PDF)