
 

 

 
 
 

 

 
 
 

 

 
 

  

Lecture 3 
The Hamiltonian analysis of lattice vibrations. Phononic Bandgap. 

Program: 
1.	 Lattice vibrations in 1D “diatomic” lattice: 
2.	 The emergence of acoustic and optical modes 
3.	 Lattice vibrations in a monoatomic 1D lattice: relevance to elastic properties 

Questions you should be able to answer by the end of today’s lecture: 
1.	 How is the spring constant related to the elastic moduli? 
2.	 How is the elastic moduli measured in a material? 
3.	 What is the difference between optical and acoustic modes of the dispersion relation and 

in what types of crystals do they emerge? 

References: 
1.	 Kittel, Chapter 4, page 99. 
2.	 Ashcroft and Mermin, Chapter 22, page 422. 
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Bond type So (Nm-1) E(GPa) (with ro = 2.5 X 10-10m)

Covalent, e.g. C-C

Metallic, e.g. Cu-Cu

Ionic, e.g. Na-Cl

H-bond, e.g. H2O-H2O

Van der Waals, e.g. Polymers

50-180 200-1000

60-300

8-12

2-4

32-96

2-3

0.5-1
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Connection with elasticity theory: Spring Constants and Young’s Modulus. 

How can we connect the atomistic view of oscillating bonds between atoms with elastic 
response of a material as a whole? What is the relationship between the Young’s modulus 
and the bond strength? 
The harmonic analysis described above assumed elastic energy that is proportional to the 
displacement squared: 

V u u   K 
2

2 

The resulting restoring force (acting on the atoms in the lattice) is: 

dV u 
F     Ku 

du 
K represents the bond stiffness. In order to compress a solid of cross section A with N bonds 
within the cross section by the displacement u we need to apply a force: 
Fapplied  Frestoring  N  Ku 
Then the force per unit area or stress is: 

F N   Ku 
A A 

If the area occupied by a unit cell is on average a, where a is the equilibrium bond length, then: 

N K u K  Ku   E; E  ,   u 
Na2 a a a a 

Here  is the bond displacement per bond length or strain and E is Young’s modulus or bond 
stiffness per bond length.  This relates (in an oversimplified way) the spring constant (or bond 
stiffness) to the Elastic moduli E, which is the macroscopically measured quantity. 

How do we measure Young’s modulus?  
Remember in long wavelength (ka<<1) limit we found that group velocity (or velocity of sound) 

 

 a . This means if we measure velocity of sound we can find K and hence Young’s 
m 

vg  K 

Ea3 E
modulus E: K  Ea  v    E  v2 

g m  g 

In real experiments: One typically attaches a piezoelectric crystal to one end and measures the 
time it takes the sound excitation to reach the other end. 
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Longitudinal vibrations of a one-dimensional diatomic lattice. 
(For example: cubic crystals with diatomic basis). 

Degrees of freedom: 

When a crystal has two atoms or more per primitive basis, such as Rocksalt structure of NaCl 
(FCC with two atom basis), Diamond structure (FCC with two atom basis) of Si, Ge, diamond 
carbon or α-Sn each vibrational mode develops two branches known as acoustic and optical.  In 
general, if there are N atoms in the primitive cell, there are 3N branches to the dispersion 
relations: 3 acoustical branches and 3N-3 optical branches. 
In order to gain intuition about the nature of acoustic and optical vibrational modes, for 
simplicity, we will focus on 1D lattice to the one discussed above: 

I.	 The system: Let’s consider a 1D lattice of pairs of atoms connected by a bond of different 
strength than the bonds connecting the two-atom units to each other. 

Figure removed due to copyright restrictions. Fig. 22.9: Ashcroft, Neil 
W., and N. David Mermin. Solid State Physics. Cengage, 1976. 

II. 	The Hamiltonian 
The energy for this system: 

mv1
2 
s mv2

2 
s K	 G

E    x2s  x1s  a2  x1s1  x2s a  d2 

2 2 2	 2s s s 

Similarly to our example from the last lecture, it is natural to consider the energy as a function of  
the displacements u1s and u2s rather than in terms of coordinates x1s and x2s.  
Then the Hamiltonian for this lattice is:  

p
1
2 
s

p
2
2 
s K 2 G 2

H    u2s  u
1s   u1s1 

 u
2s 

s 2m s 2m s 2 s 2 

III. Equations of motion 
Let’s consider the part of the Hamiltonian that is dependent on all “s” components: 

p K 2	 2 G 2p
1
2 
s 2

2 
s	 G

H
s    u2s  u

1s   u1s1 
 u

2s   u1s  u
2s1 2m 2m 2 2 2 

Then the Hamilton’s Equations yield the following equations of motion: 
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IV. Solutions 
By analogy with the example from last lecture we look for solutions in the form: 

iksa it iksa itu  u e  e , u  u e  e1s 1 2s 2 

V. Dispersion relations 
Substituting the solutions into the equations of motion, we obtain the following linear equations: 
 K G   2 

    
K  G eika u2 

 0 m u1  m m   

 K G ika 
  K G  

  e u1 


2  
u2 

 0 
 m m  m  

This homogenous linear system of equations has a solution only if the determinant of the 
coefficient matrix is zero: 

K G      K G ika  2     e  m  m m   
 0 

 K G ika 
  K G  

  e   2   
  m m  m  

From the determinant equation we get a quadratic equation with the following solutions: 
K  G 1 2   K 2  G2  2KG cos ka 

m m 

For each k there are two solutions, which are called the two branches of the dispersion curves.  
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K 2 G2  2KG coska , u
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 u
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K 2 G2  2KG cos ka , u
1 
 u
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Figure removed due to copyright restrictions. Fig. 22.10: Ashcroft, Neil 
W., and N. David Mermin. Solid State Physics. Cengage, 1976. 

Let us examine the following limiting cases of the dispersion relations: 

Case I: Long wavelength ka  1 
K G 1 

Optical Branch:  2   
m m  

K G 1 
Acoustic branch:  2   

m m 

Using Taylor series expansion near ka=0, we obtain: 
 K  G 2  2 , u1 

 u
2 m  

   
K  G 1  K  G  KG 2  KG 2 2   K 2  G2  2KG  KGk 2a2  1 1 k 2a  k2a , u

1 
 u

2m m m  k  G2   2m K   G
   

Figure removed due to copyright restrictions. Fig. 22.11: Ashcroft, Neil 
W., and N. David Mermin. Solid State Physics. Cengage, 1976. 
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Case II: Edges of the Brillouin zone ka   
  

Optical Branch:  2 k     2K 
,u

1 
 u

2 a  m 
  

Acoustic Branch: 
2 k   

  2G 
,u

1 
 u

2 a  m 

Figure removed due to copyright restrictions. Fig. 22.12: Ashcroft, Neil 
W., and N. David Mermin. Solid State Physics. Cengage, 1976. 

Case III: K>>G  
The bond between the atoms within the unit is much stronger than the bond between units.  

Optical branch:   
2  K G 
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Acoustic branch:  2  K G  1 
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Acoustic branch: 
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The optical branch now has a frequency, which is k independent and is approximately equal to 
that of the frequency of vibration of a diatomic molecule. This leads to an additional insight into 
the physical interpretation of the optical branch and the distinction between it and the acoustic 
branch. Essentially, this branch is a band of frequencies, which results from the broadening 
associated with the coupling between the individual oscillators. The motion thus originates from 
the diatomic motion. In the acoustic mode the ions in a cell are moving in the same direction and 
thus the motion is essentially a collective motion. 
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