I. Vectors, Vector Addition, Vector Notations

Some Vector Notations

Vector	Matrix	Unit Vector
\vec{e}	M	\hat{e}
e_{i}	$M_{i j}$	\hat{e}_{i}
$\|e\rangle$	\widehat{M}	$\|e\rangle$

II. Vector "Multiplication"
$\vec{e}=\left[\begin{array}{l}2 \\ 3\end{array}\right] \vec{a}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$
Dot product is as close to multiplication as vectors have

$\vec{e} \cdot \vec{a}=\vec{e}^{T} \vec{a}=\left[\begin{array}{ll}2 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 5\end{array}\right]=2 \cdot 1+3 \cdot 5=17=|\vec{e}||\vec{a}| \cos \Theta$
$\vec{e} \cdot \vec{e}=|\vec{e}||\vec{e}| \cos 0=|\vec{e}|^{2} \rightarrow=\left[\begin{array}{ll}2 & 3\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=13$
Normalization: Dot product of something with itself is equivalent to its length/magnitude Unit Vector $\quad \hat{e}=\frac{1}{\sqrt{13}}\left[\begin{array}{l}2 \\ 3\end{array}\right]=\frac{\vec{e}}{|\vec{e}|}$
III. Projection interpretation of dot product
$\hat{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \hat{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\vec{e} \cdot \hat{x}=\left[\begin{array}{ll}2 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=2=\left|\vec{e}_{\hat{x}}\right|$
$\vec{e} \cdot \hat{y}=\left[\begin{array}{ll}2 & 3\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=3=\left|\vec{e}_{\hat{y}}\right|$

The dot product may be thought of as how much one vector and another are related.
IV. Basis
\hat{x} and \hat{y} are orthogonal or normal basis that are complete i.e. can map any vector in 2 D .

Descartes' basis is complete, but not orthogonal.

\hat{x} and \vec{x} are neither normal or complete

V. Matrixes are operations

Identity: returns any vector multiplied by it (the " 1 " of the vector-space)
$I \vec{a}=\vec{a} \quad I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
x Stretch: doubles the x-value of any vector
$S \vec{a}=\left[\begin{array}{l}2 a_{1} \\ a_{2}\end{array}\right] \quad S=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

Rotation: Rotates any vector about the origin by angle Θ
$R=\left[\begin{array}{cc}\cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta\end{array}\right]$

Projection: A very important matrix, gives the basis vector weighted by the projection of the vector its applied on
$P_{\hat{a}} \vec{e}=(\hat{a} \cdot \vec{e}) \hat{a}=\hat{a} \hat{a}^{T} \vec{e}$
$P_{\hat{a}}=\hat{a} \hat{a}^{T}$
VI. Eigenvalues, Eigenvectors
$M \vec{e}=\varepsilon \vec{e}$

If \vec{e} is an eigenvector of M, multiplying $M \vec{e}$ is the same as multiplying $\varepsilon \vec{e}$, where ε is the constant eigenvalue of the eigenvector.

An $n \times n$ matrix can have no more than n eigenvalues. If it has n non-zero values, then it has a complete eigenbasis.

For example all vectors are eigenvalues of the identity matrix. This is because the I matrix has n eigenvalues that are all 1 , so any n distinct, independent vectors could be its eigenbasis. For conveniences, we choose an orthogonal basis whenever possible.

Let's try a different matrix.
$\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$
To find the values and vectors we introduce the determinant
$\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-c b$
$\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=\left(\begin{array}{ccc}+ & - & + \\ a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=a(e i-f h)-b(d i-g f)+c(d h-e g)$

Conveniently, $\operatorname{det}(M)=\prod \varepsilon_{i} \therefore$ if any $\varepsilon=0, \operatorname{det}(M)=0$

So:

$$
M \vec{e}_{1}=\varepsilon_{1} \vec{e}_{1}
$$

$\left(M-\varepsilon_{1} I\right) \vec{e}_{1}=0$
So $\left|M-\varepsilon_{1} I\right|=0$
$\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|=(a-\lambda)(d-\lambda)-c b=0$
The eigenvalues are the roots of this characteristic equation
$\left|\begin{array}{cc}1 \ngtr & 3 \\ 3 & 1-\lambda\end{array}\right|=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-8=(\lambda-4)(\lambda+2)$
$\varepsilon_{1}=4 \quad \varepsilon_{2}=-2$

Find vectors by examination
$M-\varepsilon_{1} I=\left(\begin{array}{cc}1-4 & 3 \\ 3 & 1-4\end{array}\right)=\left(\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right) \rightarrow\left(\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right) \vec{e}_{1}=0$
$\vec{e}_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}$,
$\vec{e}_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$
VII. Some matrix operations

Inverse
$M^{-1} M=I$
Transpose
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{T}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$
Hermitian transpose: VERY IMPORTANT, whenever we transpose a complex vector, we need to use the Hermitian transpose, or else we will not get real lengths for vectors dotted with themselves
$M^{t}=M^{H}=\left(M^{T}\right)^{*}$
$\left[\begin{array}{ll}1 & i \\ 0 & 1\end{array}\right]^{t}=\left[\begin{array}{cc}1 & 0 \\ -i & 1\end{array}\right]$
Hermitian and symmetric matrix
Symmetric $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad$ Hermitian $\left[\begin{array}{ll}a+b i & c+i d \\ c-i d & e+i f\end{array}\right]$
$M=M^{T}$
$H^{t}=H$
Hermitian matrix will always have real eigenvalues. Hermitian and symmetric matrixes have normal eigenvectors (but not necessarily complete). Projection matrixes are symmetric but only have 1 (and 0) as an eigenvalue with the vector of the projection being the eigenvector.
VIII. Commutation
$[A, B]=A B-B A, A B-B A$ only if they share eigenvectors.
IX. Spectral theorem of Symmetric or Hermitian matrixes.
$M=\sum_{i} \varepsilon_{i} P_{\hat{e}_{i}}$
Which means that $M \vec{a}$ is equivalent to weighting the eigenvalues of M by the projection of \vec{a} on the corresponding vector. This will be important to quantum...

MIT OpenCourseWare
http://ocw.mit.edu

3.024 Electronic, Optical and Magnetic Properties of Materials

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

