
I. Vectors, Vector Addition, Vector Notations 

 

 

 

 

 

Some Vector Notations 

Vector Matrix Unit Vector 
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II. Vector “Multiplication”  
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Dot product is as close to multiplication as vectors have 
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Normalization: Dot product of something with itself is equivalent to its length/magnitude 
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III. Projection interpretation of dot product 
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The dot product may be thought of as how much one vector and another are related.  
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Vectors 

[
 

 
] 

Vector Addition 
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IV. Basis 

 ̂ and  ̂ are orthogonal or normal basis that are complete i.e. can map any vector in 2D.  

 

 

 

 

Descartes’ basis is complete, but not orthogonal. 

 

 

 

 ̂ and  ⃑ are neither normal or complete 
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V. Matrixes are operations 

Identity: returns any vector multiplied by it (the “1” of the vector-space) 

  ⃑   ⃑       [
  
  

] 

 

x Stretch: doubles the x-value of any vector 
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Rotation: Rotates any vector about the origin by angle   

  [
         
        

] 

 

Projection: A very important matrix, gives the basis vector weighted by the projection of the vector its 

applied on 

  ̂ ⃑  ( ̂   ⃑) ̂   ̂ ̂
  ⃑ 

  ̂   ̂ ̂
  

 

  

3



VI. Eigenvalues, Eigenvectors 

  ⃑    ⃑ 

If  ⃑ is an eigenvector of  , multiplying   ⃑ is the same as multiplying   ⃑, where   is the constant 

eigenvalue of the eigenvector. 

An n x n matrix can have no more than n eigenvalues.  If it has n non-zero values, then it has a complete 

eigenbasis. 

For example all vectors are eigenvalues of the identity matrix.  This is because the I matrix has n 

eigenvalues that are all 1, so any n distinct, independent vectors could be its eigenbasis.  For 

conveniences, we choose an orthogonal basis whenever possible. 

Let’s try a different matrix. 
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To find the values and vectors we introduce the determinant 
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Conveniently,     ( )  ∏    if any         ( )    

So: 
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The eigenvalues are the roots of this characteristic equation 
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Find vectors by examination 
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VII. Some matrix operations 

Inverse 

       

Transpose 
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Hermitian transpose: VERY IMPORTANT, whenever we transpose a complex vector, we need to use the 

Hermitian transpose, or else we will not get real lengths for vectors dotted with themselves 
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Hermitian and symmetric matrix 
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]                 [
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Hermitian matrix will always have real eigenvalues.  Hermitian and symmetric matrixes have normal 

eigenvectors (but not necessarily complete).  Projection matrixes are symmetric but only have 1 (and 0) 

as an eigenvalue with the vector of the projection being the eigenvector.  

VIII. Commutation 

[A,B] = AB-BA, AB-BA only if they share eigenvectors. 
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IX. Spectral theorem of Symmetric or Hermitian matrixes. 

  ∑    ̂ 
 

 

Which means that   ⃑ is equivalent to weighting the eigenvalues of   by the projection of  ⃑ on the 

corresponding vector. This will be important to quantum… 
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