Fourier Series: Decomposition into periodic functions.
I. Defining projection in function space, one way is as an integral over a domain.
$\begin{gathered}\vec{a} \cdot \vec{b} \\ \langle a \mid b\rangle\end{gathered} \rightarrow \int_{D} a(x)^{*} \cdot b(x) d x=\langle a \mid b\rangle$
D: $-\infty<x<\infty$ General functions
$D:-\pi<x<\pi$ Periodic functions
D: $-p<x<q$ General restricted domain
The projection is only valid over the domain you integrate
Normalized function: $\langle a \mid a\rangle=|a|^{2}=1$
Orthogonal functions: $\langle a \mid b\rangle=0$

II. Periodic functions: Forier Series, as some a portion of a periodic or aperiodic function is periodic.

Now break that portion into a sum of periodic functions.

Why can we do this (easily)?
$a_{n^{(x)}}=\frac{2}{L} \cos ^{2} \frac{n \pi}{L} x \quad b_{m}(x)=\frac{2}{L} \sin \frac{2 m \pi}{L} x \quad a_{0(x)}=\frac{1}{L} \quad n, m=1,2,3 \ldots$
$D=-\frac{L}{2} \cdot \cdot \frac{L}{2} \quad\left\langle a_{i} \mid b_{j}\right\rangle=0 \quad\left\langle a_{i} \mid a_{j}\right\rangle=0 \quad\left\langle a_{i} \mid a_{i}\right\rangle=1$
Orthonormal basis! (Maybe of some differential eq...)
Another way to express:
Euler's equation: $e^{i \theta}=\cos \theta+i \sin \theta \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \quad \cos \theta=\frac{e^{i \theta}+e^{i \theta}}{2}$
Normalizing
$\int_{-\pi}^{\pi}\left(e^{i \theta} \cdot e^{-i \theta}\right) d \theta=2 \pi \rightarrow L$
$c_{p}(X)=\frac{1}{L} e^{i \frac{2 \pi p}{L} x} \quad p=0, \pm 1, \pm 2, \pm 3 \ldots$
III. Fourier Series Proper
$f(x)_{L}=\alpha_{0}+\sum_{i=1 . . \infty} \alpha_{i} \cos \frac{2 \pi i}{L} x+\beta_{i} \sin \frac{2 \pi i}{L}=\sum_{j=-\infty . . \infty} \gamma_{j} e^{i \frac{2 \pi j}{L} x}$
$\propto_{0}=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) d x$
$\propto_{i}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} \mathrm{f}(\mathrm{x}) \cos \frac{2 \pi i}{L} x d x$
$\beta_{i}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} \mathrm{f}(\mathrm{x}) \sin \frac{2 \pi i}{L} x d x$
$\gamma_{j}=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} \mathrm{f}(\mathrm{x}) e^{-i \frac{2 \pi j}{L} X} d x$
Note that the complex form and the sine/cosine form are equivalent as for each value of i, the sine is a difference and the cosine is a sum of two exponentials. We like using the sines and cosines because they are real functions while the exponential ones are complex and have complex coefficients. If you plug a real function into the complex Fourier series, some sum of sines and cosines will pop out at the end.

Example
$\mathrm{F}=x \quad \mathrm{~L}=1$
$\gamma_{0}=\int_{-\frac{1}{2}}^{\frac{1}{2}} x d x=0$
$\gamma_{1}=\int_{-\frac{1}{2}}^{\frac{1}{2}} x e^{i 2 \pi x} d x=\frac{1}{2 \pi i}$
$\gamma_{-1}=\int_{-\frac{1}{2}}^{\frac{1}{2}} x e^{-i 2 \pi x} d x=-\frac{1}{2 \pi i}$
$\gamma_{2}=\int_{-\frac{1}{2}}^{\frac{1}{2}} x e^{i 4 \pi x} d x=\frac{1}{4 \pi i}$
$\gamma_{-2}=-\frac{1}{4 \pi i}$
$\gamma_{n}=\int_{-\frac{1}{2}}^{\frac{1}{2}} x e^{i 2 \pi n x} d x=\frac{1}{2 \pi n i}$
$n= \pm 1 . . \infty$
$f(x)_{L}=\sum_{n=1 \ldots \infty} \frac{1}{n \pi}\left(\frac{e^{i 2 \pi n x}-e^{-i 2 \pi n x}}{2 i}\right)=\sum_{n=1 \ldots \infty} \frac{\sin 2 \pi n x}{\pi n}$
Since x is real and odd, our complex series resulted in a sum of sines with real coefficients.

$$
0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5
$$

IV. Fourier transform

What happens to our coefficient plot as we increase L?

The spaces get smaller and smaller until...
$C(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x \rightarrow F(f(x))$
Now the coefficients are a continuous variable that tell us about the frequency breakdown of a given function.

Let's look at some examples:

The constant function doesn't oscillate at all, so is just a delta function at the origin, by converse a sharp pulse (delta function in position), has all of the frequencies.

A sine or cosine, due to Euler's formula, are delta functions at plus/minus the frequency

In general the wider a pulse is in real space, the sharper it will be in frequency space

MIT OpenCourseWare
http://ocw.mit.edu

3.024 Electronic, Optical and Magnetic Properties of Materials

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

