
Fourier Series: Decomposition into periodic functions. 

I. Defining projection in function space, one way is as an integral over a domain. 
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The projection is only valid over the domain you integrate 

Normalized function: ⟨ | ⟩  | |    

Orthogonal functions: ⟨ | ⟩    

 

 

 

 

II. Periodic functions: Forier Series, as some a portion of a periodic or aperiodic function is periodic. 

 

 

 

 

Now break that portion into a sum of periodic functions. 
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Why can we do this (easily)? 
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Orthonormal basis! (Maybe of some differential eq…) 

Another way to express: 

Euler’s equation:                      
        

  
       

       

 
 

Normalizing 
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III. Fourier Series Proper 
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Note that the complex form and the sine/cosine form are equivalent as for each value of i, the sine is a 

difference and the cosine is a sum of two exponentials. We like using the sines and cosines because they 

are real functions while the exponential ones are complex and have complex coefficients. If you plug a 

real function into the complex Fourier series, some sum of sines and cosines will pop out at the end.  
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Example 

F=x  L=1 
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n=±1..∞ 
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Since x is real and odd, our complex series resulted in a sum of sines with real coefficients. 
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IV. Fourier transform 

What happens to our coefficient plot as we increase L? 

The spaces get smaller and smaller until… 
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Now the coefficients are a continuous variable that tell us about the frequency breakdown of a given 

function. 

Let’s look at some examples: 

The constant function doesn’t oscillate at all, so is just a delta function at the origin, by converse a sharp 

pulse (delta function in position), has all of the frequencies. 

 

 

A sine or cosine, due to Euler’s formula, are delta functions at plus/minus the frequency 

 

 

 

 

In general the wider a pulse is in real space, the sharper it will be in frequency space 
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