Piecewise Function/Continuity Review -Scattering from Step Potential

Piecewise Function/Continuity Review

Continuous piecewise functions are defined as follows:

$$
f(x)=\left\{\begin{array}{cc}
f_{1}(x) & x \in\left(-\infty, a_{1}\right] \\
f_{2}(x) & x \in\left[a_{1}, a_{2}\right] \\
\vdots & \vdots \\
f_{n}(x) & x \in\left[a_{n}, \infty\right)
\end{array}\right.
$$

Here we note that the following continuity conditions must be in place for these functions to be piecewise continuous:

$$
\begin{aligned}
f_{n}\left(a_{n}\right) & =f_{n+1}\left(a_{n}\right) \\
\frac{d f_{n}\left(a_{n}\right)}{d x} & =\frac{d f_{n+1}\left(a_{n}\right)}{d x}
\end{aligned}
$$

Wave functions must obey the same boundary conditions. Note however that the potential function $V(x)$ does not have to be piecewise continuous, just the wave function. There are many problems of interest where $V(x)$ is a piecewise function and not necessarily continuous such as the particle in a 1D box and barrier and potential well problems.

Example 1: Particle in a box-symmetric about x-axis

Consider the above system with the piecewise potential energy function $V(x)$ for an electron inside the infinite potential well.

$$
V(x)=\left\{\begin{array}{cc}
\infty & x \in\left(-\infty,-\frac{d}{2}\right) \cup\left(\frac{d}{2}, \infty\right) \\
0 & x \in\left[-\frac{d}{2}, \frac{d}{2}\right]
\end{array}\right.
$$

The wave function is 0 outside the middle region since there is 0 probability of finding the electron in the infinite potential regions.

We write Schrödinger's equation for the middle region.

$$
\widehat{H} \varphi=E \varphi
$$

$$
\begin{gathered}
\frac{\hat{p}^{2}}{2 m} \psi=E \psi \rightarrow\left(\frac{\left(-i \hbar \frac{\partial}{\partial x}\right)^{2}}{2 m}\right) \psi=E \psi \\
\therefore \frac{-\hbar^{2} \frac{\partial^{2} \psi}{\partial x^{2}}}{2 m}=E \psi
\end{gathered}
$$

The general solution of this equation is:

$$
\psi(x)=A e^{i k x}+B e^{-i k x}
$$

with $k^{2}=\frac{2 m E}{\hbar^{2}}$
The boundary conditions (BCs) for this problem are:

$$
\psi\left(-\frac{d}{2}\right)=0 \text { and } \psi\left(\frac{d}{2}\right)=0
$$

The first BC gives:

$$
A e^{\frac{i k d}{2}}+B e^{-\frac{i k d}{2}}=0
$$

The second BC gives:

$$
A e^{-\frac{i k d}{2}}+B e^{\frac{i k d}{2}}=0
$$

Adding these two equations:

$$
A\left(e^{\frac{i k d}{2}}+e^{-\frac{i k d}{2}}\right)+B\left(e^{\frac{i k d}{2}}+e^{-\frac{i k d}{2}}\right)=0
$$

or

$$
\begin{gathered}
2 A \cos \frac{k d}{2}+2 B \cos \frac{k d}{2}=0 \\
2(A+B) \cos \frac{k d}{2}=0
\end{gathered}
$$

Subtracting the second equation from the first equation:

$$
A\left(e^{\frac{i k d}{2}}-e^{-\frac{i k d}{2}}\right)-B\left(e^{\frac{i k d}{2}}-e^{-\frac{i k d}{2}}\right)=0
$$

or

$$
\begin{gathered}
2 i A \sin \frac{k d}{2}-2 i B \sin \frac{k d}{2}=0 \\
2 i(A-B) \sin \frac{k d}{2}=0
\end{gathered}
$$

Thus these equations must simultaneously be true:

$$
\begin{aligned}
& 2(A+B) \cos \frac{k d}{2}=0 \\
& 2(A-B) \sin \frac{k d}{2}=0
\end{aligned}
$$

If $A=B$:

$$
\cos \frac{k d}{2}=0 \rightarrow k d=n \pi \text { with } n \text { odd }
$$

If $A=-B$:

$$
\sin \frac{k d}{2}=0 \rightarrow k d=n \pi \text { with } n \text { even }>0
$$

Thus the solution to the problem is:

Such that:

$$
C_{o d d}=2 c_{\text {odd }} \text { and } C_{\text {even }}=2 i c_{\text {even }}
$$

The constants C and D are found by the normalization condition for the total probability of finding the particle:

$$
1=\int_{-\frac{d}{2}}^{\frac{d}{2}} \psi_{n}^{*}(x) \psi_{n}(x) d x=\left\{\begin{array}{l}
\int_{-\frac{d}{2}}^{\frac{d}{2}} C_{\text {odd }}^{2} \cos ^{2}\left(\frac{n \pi x}{d}\right) d x \rightarrow C_{\text {odd }}=\sqrt{\frac{2}{d}} \\
\int_{-\frac{d}{2}}^{\frac{d}{2}} C_{\text {even }}^{2} \sin ^{2}\left(\frac{n \pi x}{d}\right) d x \rightarrow C_{\text {even }}=\sqrt{\frac{2}{d}}
\end{array}\right.
$$

Therefore:

$$
\psi_{n}(x)= \begin{cases}\sqrt{\frac{2}{d}} \cos \left(\frac{n \pi x}{d}\right) & \text { nodd } \\ \sqrt{\frac{2}{d}} \sin \left(\frac{n \pi x}{d}\right) & n \text { even }\end{cases}
$$

The energies of the system are quantized such that:

$$
E_{n}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2}\left(\frac{n \pi}{d}\right)^{2}}{2 m}=\frac{\hbar^{2} n^{2} \pi^{2}}{2 m d^{2}}=\frac{h^{2} n^{2}}{8 m d^{2}}
$$

Example 2: Scattering off a step potential.
Consider the following piecewise potential energy function $V(x)$ for an electron traveling incident from the left side with total energy $E>V_{0}$.

$$
V(x)=\left\{\begin{array}{cc}
0 & x \in(-\infty, 0) \\
V_{0} & x \in[0, \infty)
\end{array}\right.
$$

Find the general form of the wave functions for this potential energy and the transmission and reflections coefficients for the incident electron, R and T.

First we write Schrödinger's equation in the two regions.

$$
\begin{gathered}
\hat{H} \psi=E \psi \\
\left(\frac{\hat{p}^{2}}{2 m}+V\right) \psi=E \psi \rightarrow\left(\frac{\left(-i \hbar \frac{\partial}{\partial x}\right)^{2}}{2 m}+V\right) \psi=E \psi
\end{gathered}
$$

In region I:

$V=0$

$$
\therefore \frac{-\hbar^{2} \frac{\partial^{2} \psi_{\mathrm{I}}}{\partial x^{2}}}{2 m}=E \psi_{\mathrm{I}}
$$

In region II:

$V=V_{0}$

$$
\therefore \frac{-\hbar^{2} \frac{\partial^{2} \psi_{\mathrm{II}}}{\partial x^{2}}}{2 m}+V_{0} \psi_{\mathrm{II}}=E \psi_{\mathrm{II}}
$$

Since the wave function must be piecewise continuous, we have the following boundary conditions (BCs).

BC are $\psi_{\mathrm{I}}(0)=\psi_{\mathrm{II}}(0)$ and $\frac{\partial \psi_{\mathrm{I}}}{\partial x}(0)=\frac{\partial \psi_{\mathrm{II}}}{\partial x}(0)$

Now, to solve these we write the general solutions for the wave function in each region and apply boundary conditions.

Let $k^{2} \equiv \frac{2 m E}{\hbar^{2}}$ and $\rho^{2} \equiv \frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}$
In region I:

$$
k^{2} \psi_{\mathrm{I}}+\frac{\partial^{2} \psi_{\mathrm{I}}}{\partial x^{2}}=0 \text { which has solutions of the form } \psi_{\mathrm{I}}(x)=A e^{i k x}+B e^{-i k x}
$$

In region II:

$$
\rho^{2} \psi_{\mathrm{II}}+\frac{\partial^{2} \psi_{\mathrm{II}}}{\partial x^{2}}=0 \text { which has solutions of the form } \psi_{\mathrm{II}}(x)=C e^{-i \rho x}+D e^{i \rho x}
$$

Since the electron is incident from the left, there can never be a rightward propagating wave from the right side.

$$
C=0 \rightarrow \psi_{\mathrm{II}}(x)=D e^{i \rho x}
$$

The coefficients R and T are simply related to the coefficients A, B, and D such that A corresponds to the incident electron, B the reflected electron, and D any transmission electron.
The exact correspondence comes from the conservation of the flux of electrons from the left equaling the flux of the electrons on the right.
The probability current/flux is simply the probability amplitudes times the velocity of the electron.

$$
\begin{gathered}
v=\frac{p}{m}=\frac{\hbar k}{m} \\
F=A^{2} v
\end{gathered}
$$

We have 3 probability currents/fluxes, incident, reflected, and transmitted.

$$
\begin{gathered}
I+R=T \\
A^{*} A \frac{\hbar k}{m}+B^{*} B \frac{\hbar k}{m}=D^{*} D \frac{\hbar \rho}{m}
\end{gathered}
$$

Assuming $I=1$, we can normalize this current/flux equation by $A^{*} A k$ and obtain the following relations for R and T.
We can thus write $R=\frac{B^{*} B}{A^{*} A}$ and $T=\frac{D^{*} D}{A^{*} A} \frac{\rho}{k}$.
Now, using the boundary conditions:

$$
\begin{gathered}
\psi_{\mathrm{I}}(0)=\psi_{\mathrm{II}}(0) \rightarrow A e^{i k 0}+B e^{-i k 0}=D e^{i \rho 0} \rightarrow A+B=D \\
\frac{\partial \psi_{\mathrm{I}}}{\partial x}(0)=\frac{\partial \psi_{\mathrm{II}}}{\partial x}(0) \rightarrow i k\left(A e^{i k 0}-B e^{-i k 0}\right)=i \rho D e^{i \rho 0} \rightarrow A-B=\frac{i \rho}{i k} D
\end{gathered}
$$

Subtracting the second equation from the $1^{\text {st }}$ times $\frac{i k}{i \rho}$ we can find R :

$$
\begin{gathered}
\left(1-\frac{i k}{i \rho}\right) A+\left(1+\frac{i k}{i \rho}\right) B=0 \\
\frac{B}{A}=-\frac{\left(1-\frac{i k}{i \rho}\right)}{\left(1+\frac{i k}{i \rho}\right)}=\frac{i \rho-i k}{i \rho+i k}=\frac{\rho-k}{\rho+k}
\end{gathered}
$$

$$
\begin{gathered}
R=\frac{B^{*} B}{A^{*} A}=\left(\frac{\rho-k}{\rho+k}\right)^{2} \\
R=\left(\frac{\rho-k}{\rho+k}\right)^{2} \\
R=\frac{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}-2 \frac{2 m \sqrt{E\left(E-V_{0}\right)}}{\hbar^{2}}+\frac{2 m E}{\hbar^{2}}}{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}+2 \frac{2 m \sqrt{E\left(E-V_{0}\right)}}{\hbar^{2}}+\frac{2 m E}{\hbar^{2}}} \\
\therefore R=\frac{\left(E-V_{0}\right)-\sqrt{E\left(E-V_{0}\right)}+E}{\left(E-V_{0}\right)+\sqrt{E\left(E-V_{0}\right)}+E}
\end{gathered}
$$

Adding the two equations we can find T :

$$
\begin{gathered}
2 A=\left(1+\frac{i \rho}{i k}\right) D \\
\frac{D}{A}=\frac{2}{\left(1+\frac{i \rho}{i k}\right)}=\frac{2 i k}{(i k+i \rho)}=\frac{2 k}{k+\rho} \\
T=\frac{D^{*} D}{A^{*} A} \frac{\rho}{k}=\left(\frac{2 k}{k+\rho}\right)^{2} \frac{\rho}{k}=\left(\frac{4 \rho k}{(k+\rho)^{2}}\right) \\
T=\left(\frac{4 \frac{2 m \sqrt{E\left(E-V_{0}\right)}}{\hbar^{2}}}{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}+2 \frac{2 m \sqrt{E\left(E-V_{0}\right)}}{\hbar^{2}}+\frac{2 m E}{\hbar^{2}}}\right) \\
\therefore T=\frac{4 \sqrt{E\left(E-V_{0}\right)}}{\left(E-V_{0}\right)+\sqrt{E\left(E-V_{0}\right)}+E}
\end{gathered}
$$

Note that classically a particle would always reflect, but here there is a finite probability of transmission.

Plotting R (red) and T (blue) versus E.

For the case $E<V_{0}$, $i \rho$ becomes real, so let $i \rho=\alpha$.

$$
\begin{gathered}
\frac{B}{A}=\frac{\alpha-i k}{\alpha+i k} \\
R=\frac{B^{*} B}{A^{*} A}=\left(\frac{\alpha+i k}{\alpha-i k}\right)\left(\frac{\alpha-i k}{\alpha+i k}\right)=\frac{\alpha^{2}+k^{2}}{\alpha^{2}+k^{2}}=1
\end{gathered}
$$

For this case, the entire wave is reflected, analogous to the classical case. The wave function in region II is a decaying exponential, which is not classical. This implies even though electrons are reflected if their energy is lower than the barrier potential, they have a finite probability of penetrating the step barrier before being reflected.

MIT OpenCourseWare
http://ocw.mit.edu

3.024 Electronic, Optical and Magnetic Properties of Materials

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

