3.032 Mechanical Behavior of Materials
 Fall 2007
 STRESS AND STRAIN TRANSFORMATIONS:

Finding stress on a material plane that differs from the one on which stress is known...
or "Why it's easier to remember Mohr's circle"
Note: Derived in class on Wednesday 09.19.07.
Force balance for stress over a face inclined an angle θ with respect to the original (x, y) axes give:

$$
\begin{gather*}
\sigma_{x^{\prime} x^{\prime}}=\frac{\sigma_{x x}+\sigma_{y y}}{2}+\frac{\sigma_{x x}-\sigma_{y y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \tag{1}\\
\sigma_{y^{\prime} y^{\prime}}=\frac{\sigma_{x x}+\sigma_{y y}}{2}-\frac{\sigma_{x x}-\sigma_{y y}}{2} \cos 2 \theta-\tau_{x y} \sin 2 \theta \tag{2}\\
\tau_{x^{\prime} y^{\prime}}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta \tag{3}
\end{gather*}
$$

Taking the derivative of Eq. (1) with respect to θ to obtain the orientation of maximum normal stress gives:

$$
\begin{equation*}
\tan 2 \theta_{\text {normalstress }, \max }=\frac{\tau_{x y}}{\frac{\sigma_{x x}-\sigma_{y y}}{2}} \tag{4}
\end{equation*}
$$

and substituting the corresponding $\sin 2 \theta$ and $\cos 2 \theta$ expressions into Eqs. (1-2) to obtain the maximum normal stresses in this 1-2 plane gives:

$$
\begin{equation*}
\sigma_{1,2}=\frac{\sigma_{x x}+\sigma_{y y}}{2} \pm \sqrt{\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)^{2}+\tau_{x y}^{2}} \tag{5}
\end{equation*}
$$

where, by convention, $\sigma_{1} \geq \sigma_{2}$.
Taking the derivative of Eq. (2) and going through the same process to obtain the orientation and magnitude of the maximum shear stresses gives:

$$
\begin{equation*}
\tan 2 \theta_{\text {shearstress,max }}=\frac{-\frac{\left(\sigma_{x x}-\sigma_{y y}\right)}{2}}{\tau_{x y}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{\text {max,in-plane }}=\sqrt{\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)^{2}+\tau_{x y}^{2}} \tag{7}
\end{equation*}
$$

Note that the equations for coordinate transformations of strain (strain transformation equations) are completely analogous. For example,

$$
\begin{equation*}
\epsilon_{x^{\prime} x^{\prime}}=\frac{\epsilon_{x x}+\epsilon_{y y}}{2}+\frac{\epsilon_{x x}-\epsilon_{y y}}{2} \cos 2 \theta+\epsilon_{x y} \sin 2 \theta \tag{8}
\end{equation*}
$$

but the only thing to note is that this $\epsilon_{x y}$ is equal to half the engineering shear strain, $\gamma_{x y} / 2$. In other words, if you are given a state of engineering strain for a material body, you have to multiply the engineering shear strain components by 2 before using these equations to find the full strain state on some other plane inclined an angle θ.

As you will see in the next class, a very smart engineer named Otto Mohr figured out how to represent these equations in the shape of a circle, so that one can quickly and graphically locate the orientations and magnitudes of maximum normal and shear stresses / strains!

